

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 i

Media Delivery Core (MDC)

Use cases for Asset Ordering, Delivery and Tracking

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 ii

CONTENTS

1 Introduction .. 1
1.1 Document Organization .. 1
1.2 Document Notation and Conventions ... 1

1.3 Normative References .. 2
1.4 Informative References... 2
1.5 XML Namespaces .. 2
1.6 Identifiers .. 2
1.7 Status ... 3

1.8 Using this Document .. 3
1.8.1 Workflow Model ... 3
1.8.2 General Encoding Guidelines .. 4

1.8.3 Use Cases ... 4

2 General encoding guidelines ... 5
2.1 Encoding Source and Destination .. 5

2.1.1 Direct communications studio to platforms .. 5
2.1.2 Service Providers .. 5
2.1.3 Contact Information ... 6

2.2 Scope ... 6
2.2.1 Scope for Avails and Title Lists ... 6

2.2.2 Scope for Titles ... 6

2.2.3 Constraining Scope ... 6

2.3 Referring to content, tracks, files, etc. .. 7
2.3.1 Referencing a specific track by reference (identifier) 7

2.3.2 Referencing tracks by description ... 9
2.4 Terms ... 11

3 Asset Planning ... 12

3.1 General Information .. 12
3.1.1 Push, Pull and Negotiated models... 12

3.1.2 Scope .. 13
3.1.3 Referring to assets by language, track (ID), and description 13
3.1.4 Note on some examples .. 15

3.2 Studio Push .. 16

3.3 Platform Pull ... 17
3.4 Negotiated exchange .. 18

4 Product Status ... 21

4.1 General information .. 21
4.1.1 ProductStatus vs. ObjectStatus (from Avails and Title List) 21
4.1.2 Scope .. 22
4.1.3 Note on examples.. 22

4.2 Product Status .. 23

4.2.1 What status is reported on ... 23
4.2.2 ProgressCode ... 23
4.2.3 Reporting Overall Status ... 23

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 iii

4.2.4 Reporting Asset Status by category, language and component 24
4.2.5 Reporting Multiple Asset Status .. 25

4.3 QC/Error Report ... 26
4.3.1 Simple Error Report ... 26
4.3.2 Providing additional information in an Error Report 26

NOTE: No effort is being made by OTT.X, the OTT.X Digital Council or Motion Picture Laboratories to in

any way obligate any market participant to adhere to the Common Metadata, Common Media Manifest

Metadata or Media Entertainment Core, or other specifications. Whether to adopt the specifications in whole

or in part is left entirely to the individual discretion of individual market participants, using their own

independent business judgment. Moreover, the OTT.X, the OTT.X Digital Council, and Motion Picture

Laboratories each disclaim any warranty or representation as to the suitability of the these specifications for

any purpose, and any liability for any damages or other harm you may incur as a result of subscribing to

these specification.

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 iv

REVISION HISTORY

Version Date Description

1.0 December 14, 2019 First Release

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 1

1 INTRODUCTION

This specification is designed to simplify implementations of Asset Ordering and

Delivery. The Asset Ordering and Delivery specification (www.movielabs.com/md/delivery)

supports a broad range of use cases, without specific instructions for any given use case. This

document provides specific recommendations and instructions for a variety of high-priority use

cases.

This document is part of a series of specifications collectively referred to as the

MovieLabs Digital Distribution Framework (MDDF). This includes document Media Manifest

Core (MMC), Media Manifest, Media Entertainment Core (MEC), Common Metadata, Avails,

Common Ratings, QC Vocabulary others. For more information on MDDF, see

www.movielabs.com/md. The full specification supports more complex delivery use cases,

interactivity and other applications.

Studio
Mastering

Distribution
Entity

Studio
Distribution

Platform
Fulfillment

Business Terms
(Avails, Title List)

Product Definition

Metadata (MEC, MMC)

Asset Availability

Mezz

Platform
Business

Sales/Usage Reporting

Sales

Fulfillment

Interactivity
Preprocessing

Cross-Platform Extras (CPE) Player

Consumer
Experience

Offer Status

Asset Order

Media

Other MDDF

Media

Product Status/QC

Asset Ordering & Delivery

This document was produced a collaboration between MovieLabs, OTT.X, the Digital

Entertainment Group (DEG) and the members of these organizations; collectively referred to as

the Digital Supply Chain Alliance (DSCA).

1.1 Document Organization

This document is organized as follows:

1. Introduction—Background, scope and conventions

2. General Encoding Guidelines

3. Asset Planning

4. Product Status

1.2 Document Notation and Conventions

The document uses the conventions of Common Metadata [CM].

http://www.movielabs.com/md/delivery
http://www.movielabs.com/md

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 2

1.3 Normative References

[Delivery] TR-META-AOD, Asset Ordering, Delivery, and Tracking, v1.0,

www.movielabs.com/md/delivery

[Manifest] TR-META-MMM MovieLabs Media Manifest Metadata, v1.9,

http://www.movielabs.com/md/manifest

[CM] TR-META-CM MovieLabs Common Metadata, v2.8,

http://www.movielabs.com/md/md

[MMC] TR-META-MMC, Media Manifest Delivery Core, v.1.9,

www.movielabs.com/md/mmc

[MEC] Media Entertainment Core (MEC) Metadata, version 2.8.

www.movielabs.com/md/mec

[AVAILS] Entertainment Merchant’s Association (EMA) Avails.

www.movielabs.com/md/avails

[CDR] Content Delivery Requirements (CDR), www.movielabs.com/md/cdr

[EIDR-TO] EIDR Technical Overview, November 2010. http://eidr.org/technology/#docs

All Common Metadata and Media Manifest references are included by reference.

1.4 Informative References

[Practices] MDDF Best Practices: www.movielabs.com/md/practices

[CPE] Cross-Platform Extras (CPE): www.movielabs.com/cpe

1.5 XML Namespaces

This document uses the following namespaces:

• md – Defined in Common Metadata [CM]

• manifest – Defined in Media Manifest [Manifest]

• delivery – Defined in Asset Ordering and Delivery [Delivery]

1.6 Identifiers

Identifiers must be universally unique. Recommended identifier schemes may be found

in Common Metadata [CM] and in DECE Content Metadata [DECEMD].

The use of Entertainment Identifier Registry identifiers (www.eidr.org) is strongly

encouraged. Please see [EIDR-TO].

http://www.movielabs.com/md/delivery
http://www.movielabs.com/md/manifest
http://www.movielabs.com/md
http://www.movielabs.com/md/mmc
http://www.movielabs.com/md/mec
http://www.movielabs.com/md/avails
http://www.movielabs.com/md/cdr
http://eidr.org/technology/#docs
http://www.movielabs.com/md/practices
http://www.movielabs.com/cpe
http://www.eidr.org/

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 3

Best practices for identifiers can be found on www.movielabs.com/md/practices.

1.7 Status

This specification is completed and is ready for implementation. Although tested, we

anticipate that additional implementation experience will yield recommendation for changes.

Implementers should anticipate one or more revisions.

Reasonable measures will be taken to ensure changes are backwards compatible. See

Backwards Compatibility Best Practices in [CM]

1.8 Using this Document

This document is intended to be the starting point for understanding the Asset Ordering

Delivery and Status process, much like Media Manifest Core (MMC) is a starting point for

Media Manifest and Media Entertainment Core (MEC) is a starting point for Common Metadata.

MDC is intended to be used with MEC, MMC and CPE which provide specific practices

for their respective specifications.

1.8.1 Workflow Model

The following model represents a multitude of workflows, rather than any specific

workflow. This document is focused on Asset Availability, Asset Order and Product Status.

Studio/Asset Provider Retailer/Platform

R
ig

h
ts

M

an
ag

e
m

e
n

t

A
ss

e
t

P
la

n
n

in
g

A
ss

e
t

D
e

liv
e

ry

CDR
DB

Product/Asset
Planning

Asset Processing/
Delivery

Product/Asset
Planning

Offer Creation

Content
Requirements

Asset Processing/
Ingestion

Digital Assets

Avail / Title List

Offer Status

Content Delivery Requirements (CDR)

Asset Availability

Asset Order

MEC / MMC / CPE

Product/Asset Status

Delivery Other

http://www.movielabs.com/md/practices

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 4

It is unlikely that anyone would use everything in this uber-workflow. In practice, a

workflow would use only selected data objects, and within those data objects, only a small

number of specific features.

1.8.2 General Encoding Guidelines

The General Encoding Guidelines section provides instruction on how to use key

building blocks that are used across the different messages. This includes source and destination

information, how to reference an offer (i.e., what the content is fulfilling), and reference content.

These guidelines are referenced from specific use cases. When we get into use case

details, we focus on particulars to those use cases. Refer to the general guidelines for encoding

the rest of the message.

1.8.3 Use Cases

This document is focused on two categories of use cases:

• Asset Planning – How content providers and platforms come to agreement on what

content will be delivered

• Product Status – How platforms provide content providers with information about the

status of asset delivery. This ranges from general status updates, to detailed error

reporting.

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 5

2 GENERAL ENCODING GUIDELINES

2.1 Encoding Source and Destination

Message have top-level Source and Destination elements to describe where messages are

coming from and where they are going.

As described in [Delivery], DeliveryPlatform-type and DeliveryPublisher-type are used

to describe these message sources and destinations. Source and destination may include service

providers.

2.1.1 Direct communications studio to platforms

When messages are sent between studios and platforms directly (i.e., no service

providers), it is often unnecessary to included Source and Destination. However, it is always

best practice to include them.

Here is a source that’s a platform.

<delivery:Source>

 <delivery:Platform>

 <md:DisplayName>craigsmovies.com</md:DisplayName>

 </delivery:Platform>

 <delivery:ServiceProvider>

 <md:DisplayName>Fix My Movies SP</md:DisplayName>

 </delivery:ServiceProvider>

</delivery:Source>

2.1.2 Service Providers

When service providers are generating or receiving a message, ServiceProvider should be

included.

When ServiceProviders are intermediaries, Platform and Publisher should also be

included to ensure source or destination is understood. Consider a service provider acting on

behalf of multiple studios. That service provider must include both Publisher or Platform, and

ServiceProvider in any message sent.

In this example, craigsmovies.com is using the “Fix My Movies SP” service provider.

Fix My Movies SP generated the following message on behalf of craigsmovies.com with a

destination of Sofa Spud Films.

<delivery:Source>

 <delivery:Platform>

 <md:DisplayName>craigsmovies.com</md:DisplayName>

 </delivery:Platform>

 <delivery:ServiceProvider>

 <md:DisplayName>Fix My Movies SP</md:DisplayName>

 </delivery:ServiceProvider>

</delivery:Source

<delivery:Destination>

 <delivery:Publisher>

 <md:DisplayName>Sofa Spud Films</md:DisplayName>

 </delivery:Publisher>

</delivery:Destination>

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 6

2.1.3 Contact Information

Contact Information is provided in the Contact. It is recommended that Contact be

included to facilitate direct communication in case there are problems. This is the primary

contact point when Instruction/ExceptionFlag is asserted.

 <delivery:Contact>

 <md:Name>Jane C. Contact</md:Name>

 <md:PrimaryEmail>jane@sofaspudsfilms.com</md:PrimaryEmail>

 <md:Phone>555-555-5555</md:Phone>

 </delivery:Contact>

2.2 Scope

Scope defines the context of the object. Less formally, the object is being generated to

convey information or a request about a set of assets related to something. That something is the

scope.

2.2.1 Scope for Avails and Title Lists

When the scope of an object is relative to an Avails or Title List, ALID or AlternateID is

used. Once can be more specific by using TransactionID. If using Excel Avails and Title List,

TransactionID gets the AvailID data.

This example uses ALID. That means the scope of this update is all assets associated

with that ALID (i.e., all Avails or Title List entries that include that ALID).

<delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

</delivery:Scope>

2.2.2 Scope for Titles

Let’s say you want to define assets in terms of a particular movie or TV episode. The

best method is to use the EIDR ID. Alternatively, AlternateID can be used.

EIDRURN is used for deliveries associated with a title (generally an edit).

<delivery:Scope>

 <delivery:EIDRURN scope="Edit">urn:eidr:10.5240:AD07-310C-C59D-6785-C

 </delivery:EIDRURN>

</delivery:Scope>

2.2.3 Constraining Scope

If the request is more specific, elements are provided to restrict scope.

It’s generally a good idea to keep scope as simple as possible. Put the language and

format profile descriptions deeper in the asset definitions. If scope is narrower than the asset

definitions, the object will be invalid (although not necessarily detected by the validator).

Region or ExcludedRegion can be used to narrow the scope when referring to assets

specific to a territory. In the following example, the scope is everything associated with that

ALID in the US. If a particular language is not provided in the US, it would not be within scope.

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 7

<delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 <delivery:Region>

 <md:country>US</md:country>

 </delivery:Region>

</delivery:Scope>

Scope can be narrowed using Language (i.e., what language does apply to) and

FormatProfile (e.g., SD, HD, UHD).

<delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 <delivery:Region>

 <md:country>US</md:country>

 </delivery:Region>

 <delivery:Language>en-us</delivery:Language>

 <delivery:FormatProfile>HD</delivery:FormatProfile>

</delivery:Scope>

Note that any combination of Region (ExcludedRegion), Language and FormatProfile

can be used—whatever makes sense.

2.3 Referring to content, tracks, files, etc.

Throughout these specs, it is necessary to refer to content. Sometimes it’s very general

(e.g., “All content associated with offer xyz”). Sometimes it’s very specific (e.g., “00:31:25.1-

00:35:00.00 in audio track abc”). And, sometimes it’s somewhere in between (e.g., “Best French

dub for title pqr”). We supply models for the range from general to specific.

Which one should be used depends on how it’s being used. For example, when ordering

content, it’s usually a more general request. When referring to a media error, it’s usually

specific.

This section provides some example that are referred to in specific use cases. Note that

in the spirit of “core” spec, these do not cover all use cases. A much wider range of use cases

can be supported by the spec.

In the following sections we talk about

• Referencing Tracks, files, etc. – This is something that already exists and can be

things like track references and track identifiers.

• Content – In this context, we refer to content regardless of its encoding or

instantiation. Or more to the point, content that cannot be referenced by file names,

track references, track identifiers, etc.

2.3.1 Referencing a specific track by reference (identifier)

The primary object for referencing media is delivery:DeliveryObjectReference-type.

You’ll find this in objects such as AssetOrder/Asset/Reference and

ProductStatus/AssetStatus/AssetReference.

Note that when referencing tracks, it is often to include other identifiers, especially EIDR,

to provide more context.

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 8

2.3.1.1 Referencing objects using MDDF identifiers

By MDDF identifiers, we are referring to any object defined as part of the MovieLabs

Digital Distribution Framework. This includes Common Metadata/MEC, MediaManifest/MMC,

Avails and Title List, and so forth.

Media Manifest has various mechanisms for referencing content. If referencing content

in Media Manifest, the most robust mechanism is to use the Manifest Track Identifiers. These

are found in ObjectReference/TrackID.

In TrackID you can include a reference to relevant track. If it’s a video track, you

include VideoTrackID.

Let’s take a simple example. Let’s say there is a problem with a specific audio track.

<delivery:ProductStatus>

 ...

 <delivery:AssetStatus>

 <delivery:AssetReference>

 <delivery:MDDFID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.fr</delivery:AudioTrackID>

 </delivery:MDDFID>

...

2.3.1.1.1 Simple Reference

This can be used to reference any MDDF object. For example, if the problem is in

metadata, it looks almost identical.

<delivery:ProductStatus>

 ...

 <delivery:AssetStatus>

 <delivery:AssetReference>

 <delivery:MDDFID>

 <delivery:ContentID>md:cid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ContentID>

 </delivery:MDDFID>

...

2.3.1.1.2 More than one reference

It might be necessary to reference more than one track. Let’s say, for example, that there

is an A/C sync issue (i.e., audio and video are out of sync within a presentation). In this case,

one would want to reference at least the Presentation and the audio track. Note that this assumes

the video is the reference.

<delivery:ProductStatus>

 ...

 <delivery:AssetStatus>

 <delivery:AssetReference>

 <delivery:MDDFID>

 <delivery:PresentationID>md:cid:eidr-x:AD07-310C-C59D-6785-C63A-

G:main</delivery:PresentationID>

 </delivery:MDDFID>

 <delivery:MDDFID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.fr</delivery:AudioTrackID>

 </delivery:MDDFID>

...

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 9

2.3.1.2 Referencing non-MDDF identifiers

Here is an example referencing an Apple Vendor Identifier using

DeliveryObjectReference-type

<delivery:ProductStatus>

 ...

 <delivery:AssetStatus>

 <delivery:AssetReference>

 <delivery:TrackIdentifier>

 <md:Namespace>/package/video/vendor_id</md:Namespace>

 <md:Identifier>00000000012345</md:Identifier>

 </delivery:TrackIdentifier>

...

2.3.1.3 Referencing objects in IMF

There are some special features for IMF. These are defined in Common Metadata [cm],

Section 5.18, and extended in the Asset Ordering and Delivery Spec.

When referring to a track, it is necessary to reference both the CPL and the Virtual Track

ID. Purists will not that since the Virtual Track Identifier is a UUID, is unique, it is an

unambiguous reference to the track. However, we’re trying to make things easy to find and the

CPL ID is one additional hint.

A reference might look something like this:

<delivery:IMFRef>

 <manifest:CPLID>urn:uuid:de6d2644-e84c-432d-98d5-98d89271d082</manifest:CPLID>

 <delivery:VirtualTrackID>urn:uuid:f3e86156-007d-4649-a985-

e468df5a0f37</delivery:VirtualTrackID>

</delivery:IMFRef>

Generally, an OPL reference isn’t necessary unless there is reference to a particular

encoding of the track. However, in these cases there is usually a better reference for the encoded

track.

2.3.2 Referencing tracks by description

In practice we often refer to tracks descriptively; for example, “The French dub for xxx”.

An example where this is found is in Asset Ordering: AssetOrder/Asset/Description.

There are two parts to this. From, the example above, the first is xxx, which is the work

for which the French dub is needed. The second part is the characteristics of the asset itself:

French dub. Characteristics can range from the general, as just stated, or a bit more specifically

(“The French dub 5.1”) or even more specific (“The French Dub, 5.1, DD+”).

So, there are always two parts: work identification and characteristics.

2.3.2.1 Identification

Identification is an identifier (no surprise there) that unambiguously references a work.

For various reasons, this is preferably done with an EIDR. The EIDR unambiguously defines

either and abstraction or edit corresponding to the work in question. One can also use other

forms of identification.

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 10

Note that when we get into specifics like encoding an Asset Order, there are other

identifiers that have relevance, such as ALID. Note also that we do not support manual title

matching, so you’re not going to see title strings here.

2.3.2.1.1 Identifying using EIDR

EIDR objects can be referenced using EIDRURN. Note that this has an @structuralType

attribute that allows you to indicate whether it’s an Abstraction, Edit or Manifestation.

It is frequently useful to include EIDR, even when using other forms of identification.

The following example is a partial Asset Order object

<delivery:Reference>

 ...

 <delivery:EIDRURN scope="Edit">urn:eidr:10.5240:AD07-310C-C59D-6785-C

 </delivery:EIDRURN>

</delivery:Reference>

Note that the EIDR is always expressed in URN format:

https://tools.ietf.org/html/rfc7972. The definition of @scope is in Common Metadata [CM],

Section 2.1.2.

2.3.2.2 Characteristics

When we talk about characteristics, we’re talking metadata. So, the rich metadata

definitions from Media Manifest are borrowed for this purpose. These can be found in

md:DigitalAssetSet-type.

The challenge is defining exactly the metadata you need. The simple answer is to keep it

as simple as possible.

Let’s go back to the French Dub example. The following example is from

AssetOrder/Asset/Description. Note that we’re explicitly using French from France (fr-FR), not

Quebecois (fr-CA).

<delivery:Description>

 <md:Audio>

 <md:Type>Primary</md:Type>

 <md:Language>fr-FR</md:Language>

 </md:Audio>

</delivery:Description>

Let’s say we want to be more specific and specify 5.1:

<delivery:Description>

 <md:Audio>

 <md:Type>Primary</md:Type>

 <md:Language>fr-FR</md:Language>

 <md:Channels>5.1</md:Channels>

 </md:Audio>

</delivery:Description>

Let’s finish the example with French dub in 5.1 DD+. Dolby Digital Plus is more

formally Enhanced AC-3, encoded, per definition in Common Metadata, as “E-AC-3”.

<delivery:Description>

 <md:Audio>

 <md:Type>Primary</md:Type>

https://tools.ietf.org/html/rfc7972

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 11

 <md:Encoding>

 <md:Codec>E-AC-3</md:Codec>

 </md:Encoding>

 <md:Language>fr-FR</md:Language>

 <md:Channels>5.1</md:Channels>

 </md:Audio>

</delivery:Description>

This can be extended to include any descriptions in Common Metadata Digital Asset

Metadata; but only if you need it. Only specify what you care about!

Note that certain asset requirements, particularly language requirements, are implicit in

Avails and Title Lists (www.movielabs.com/md/avails). Default delivery requirements are

generally defined in written platform specifications. An alternative method for specifying

detailed platform requirements can be found a draft specification called Content Delivery

Requirements (CDR).

2.3.2.3 Language and Component

This is a special narrow case of referencing by Characteristics that is used exclusively in

ProductStatus/ObjectStatus. This is described under Product Status in Section 4.

2.4 Terms

There are various Terms objects throughout the spec (e.g., Asset/TechnicalTerms,

Asset/BusinessTerms, AssetOrder/TermsAcrossAssets). This is a flexible structure used to add

terms that are bilateral, or terms that are a little to obscure to include in the schema.

<delivery:TermsAcrossAssets>

<delivery:TechnicalTerms termName="AssetQuality">BetterThanAverage</delivery:TechnicalTerms>

</delivery:TermsAcrossAssets>

Another example of a Term would be whether delivery is flat files or component.

<delivery:AssetDisposition>

<delivery:TechnicalTerms termName="DeliveryModel">FlatFile</delivery:TechnicalTerms>

</delivery:AssetDisposition>

http://www.movielabs.com/md/avails

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 12

3 ASSET PLANNING

Asset Planning is where content providers (or service providers) and platforms (or service

providers) agree on the specific set of assets to be delivered.

This process assumes there are agreements outside of Asset Ordering and Delivery.

Ideally, information is delivered using standard methods (see Content Delivery Requirements

[CDR]1). Often, these requirements are specified in contracts, or some form of specification.

Many large platforms have help sites with their requirements.

Using these requirements, if any, as a point of departure, Asset Availability and Asset

Order are used to reach agreement on what assets will be delivered.

Note that MEC/MMC/CPE and Digital Assets are shown to illustrate the exchange of

media files and the data that accompanies them.

Asset Planning
(incl. sourcing)

Asset Processing/
Delivery

Asset Planning

Asset Processing

Digital Assets

Asset Availability

Asset Order

MEC / MMC / CPE

Delivery

OtherOther

3.1 General Information

3.1.1 Push, Pull and Negotiated models

We describe use cases in terms of ‘push’, ‘pull’ and ‘negotiated’. In the Push model, the

content provider informs the platform what it will be receiving. This generally applies to

retailers who say, “Send us everything” or platforms that have pre-negotiated titles (e.g., SVOD

or AVOD service with a Title List [Avails] defining assets). The push begins with an

AssetAvailability message.

Note that if platforms just want whatever studios send, they can skip this process entirely

and go straight to sending a Media Manifest (see [MMC]).

The pull model applies when the platform is requesting assets. This might be in response

to an Avail or Title List that references specific assets. The pull begins with an AssetOrder

object. In some cases, the Platform might already have suitable assets. In this case, those assets

could be excluded from the AssetOrder.

1 CDR is part of the broader model described in Section 1.8.1.

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 13

The negotiated model starts with an AssetAvailabilty or AssetOrder, but has AssetOrder

or AssetAvailability responses, respectively. This can be used to refine the asset list. For

example, let’s say a platform needs assets that are not in AssetAvailability. They can respond

with an AssetOrder that includes the missing assets. The content provider can then respond with

an AssetOrder that has additional information, such as dates and cost. The platform can then

confirm or reject the new information. It’s likely some of the actual negotiation happens through

human contact, but these messages provide the automation and record keeping that ensure intent

is fulfilled.

3.1.2 Scope

In AssetAvailability and AssetOrder, Scope indicates the general context of the status.

Guidance for encoding Scope can be found in Section 2.2.

If it refers to an Avails or Title List, use ALID or AlternateID. To be more specific, use

TransactionID. If using Excel Avails and Title List, TransactionID gets the AvailID data.

Region or ExcludedRegion can be used to narrow the scope when referring to assets

specific to a territory.

Within these categories, the scope can be narrowed using Language (i.e., what language

does apply to), FormatProfile (e.g., SD, HD, UHD).

3.1.3 Referring to assets by language, track (ID), and description

AssetAvailability and AssetOrder refer to assets a little differently.

The following table shows the elements use to refer to tracks in Asset Availability and

AssetOrder.

Element AssetAvailability/Disposition AssetOrder/Asset

Reference by language Language Language

Reference by specification Track TrackDescription

Reference by identifier ID

The Language object is symmetrical. For example, both a studio and platform can refer to

a “French SDH” or “English audio”.

Note that AssetOrder includes identification while AssetAvailability does not. When a

studio refers to a track, they include both description and identification. Without the description,

the Platform would not know enough about the track. On the other hand, the Platform can refers

identification provided in AssetOrder. Since the studio generated that AssetOrder, it knows what

that ID means.

AssetOrder and AssetAvailability refer to tracks with some combination of the following:

• Language and track type

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 14

• ID – Referencing a track that was listed in AssetAvailability/Disposition/Track.

• Track Description – This is metadata descriptive of the track. This is used to ask for a

track that has already been reference by in Disposition/Track. TrackDescription is

symmetric to Disposition/Track, in that it can hold exactly the same data. However,

there is no track ID.

Let’s illustrate these.

3.1.3.1 Language

The first examples show referencing by language. This can appear in either or. The first

example would be in AssetOrder/Asset/Language to express that that subtitles are required (or

will be delivered).

<delivery:Language timedText="required”>fr-FR</delivery:Language>

This example, part of AssetAvailability/Disposition/Language, says that subtitles are

available.

<delivery:Language timedText="available”>fr-FR</delivery:Language>

As you’ve probably noticed, the only difference is the value in the attribute that is

consistent with context (ordering vs. availability).

Going a little deeper, consider a case where subs and dubs are both required.

<delivery:Language audio="required” timedText="required”>fr-FR</delivery:Language>

Note that there are other values than “required”, such as “preferred” and “premium”. To

learn about these, see Asset Ordering and Delivery, Section 2.1.2.

3.1.3.2 Track Description

Track Description uses ‘digital asset’ metadata from Common Metadata. This is the

same metadata structure found in Media Manifest/MMC/CPE Inventory.

Reference by characteristics is defined in Section 2.3.2.2.

Let’s say we are referring to the French dub in AssetOrder. It would look like this:

<delivery:Description>

 <md:Audio>

 <md:Type>Primary</md:Type>

 <md:Language>fr-FR</md:Language>

 </md:Audio>

</delivery:Description>

Let’s say we are referring to the French dub in AssetAvailability. It would look like this.

Note the inclusion of the track ID. This track ID can be referenced later (i.e., in an AssetOrder

or ProductStatus).

<delivery:Track>

 <md:Audio AudioTrackID="md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-G:audio.fr">

 <md:Type>Primary</md:Type>

 <md:Language>fr-FR</md:Language>

 </md:Audio>

</delivery:Track>

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 15

3.1.3.3 Identifier

Once a platform knows about a specific track, it can reference it by its identifier. This is

the simplest and most reliable means to refer to tracks. Therefore, when track IDs are known,

this is the preferred method to reference tracks.

The full description of using identifiers is in Section 2.3.1, but we’ll provide some

additional examples here.

The mechanism for referencing tracks by ID is AssetOrder/Asset/Reference/MDDFID.

This structure supports all MDDF identifiers associated with assets, metadata and manifests.

In this example, we are referencing the track from the example in the previous section.

Since the audio track ID was specified in the AssetAvailability record, it can simply be

referenced. The fact it’s a French dub is already known to both parties.

<delivery:Reference>

 <delivery:MDDFID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.fr</delivery:AudioTrackID>

 </delivery:MDDFID>

</delivery:Reference>

As an order typically covers multiple tracks, as many tracks as necessary can be

referenced in a single Reference object.

<delivery:Reference>

 <delivery:MDDFID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.fr</delivery:AudioTrackID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.en</delivery:AudioTrackID>

 <delivery:VideoTrackID>md:vidtrackid:eidr-x:AD07-310C-C59D-6785-C63A-G:video.main

</delivery:VideoTrackID>

 <delivery:SubtitleTrackID>md:subtrackid:eidr-x:AD07-310C-C59D-6785-C63A-G:subtitle.fr

/</delivery:SubtitleTrackID>

 <delivery:SubtitleTrackID>md:subtrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:subtitle.en</delivery:SubtitleTrackID>

 </delivery:MDDFID>

</delivery:Reference>

3.1.4 Note on some examples

Strictly for brevity, some examples below are not complete XML objects. The following

shows the missing element structure. A full XML document would include the following with

examples below replacing the ellipsis (…).

Asset Availability:

<?xml version="1.0" encoding="UTF-8"?>

<delivery:AssetAvailability xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:md="http://www.movielabs.com/schema/md/v2.8/md"

xmlns:manifest="http://www.movielabs.com/schema/manifest/v1.9/manifest"

xmlns:delivery="http://www.movielabs.com/schema/md/delivery/v1.0/delivery"

xsi:schemaLocation="http://www.movielabs.com/schema/md/delivery/v1.0/delivery delivery-v1.0.xsd">

 <delivery:Compatibility>

 <manifest:SpecVersion>1.0</manifest:SpecVersion>

 </delivery:Compatibility>

...

</delivery:AssetAvailability>

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 16

Asset Order:

<?xml version="1.0" encoding="UTF-8"?>

<delivery:AssetOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:md="http://www.movielabs.com/schema/md/v2.8/md"

xmlns:manifest="http://www.movielabs.com/schema/manifest/v1.9/manifest"

xmlns:delivery="http://www.movielabs.com/schema/md/delivery/v1.0/delivery"

xsi:schemaLocation="http://www.movielabs.com/schema/md/delivery/v1.0/delivery delivery-v1.0.xsd">

 <delivery:Compatibility>

 <manifest:SpecVersion>1.0</manifest:SpecVersion>

 </delivery:Compatibility>

...

</delivery:AssetOrder>

3.2 Studio Push

For Push, the AssetAvailability object is used. When used in a pure Push model (i.e., no

negotiation), the content provider is listing all the assets that are available. The presumption is

that all assets are available now or will soon be available. A Studio Push would look something

like this:

Studio Platform

Asset Availability
(listing all available assets)

Asset Order
(listing desired assets)

MMC + Assets

Note that if a platform is taking “everything”, this process can be skipped. Media

Manifest ([MMC]) has everything that’s needed. So, in this context, a Push always has an

acknowledgement of what assets are selected from the larger set.

The essence of the AssetRequest is the Disposition object. This is where the actual

availability is listed. When we’re doing a Push, assets already exist. These assets should be

identified and described. This is done with the Track element as described in Section 3.1.3.2.

This simple example says that for the given ALID, there is one track. To add additional

tracks, just add more Track instances. The content provider will likely provide more metadata,

such encoding information and container information. MMC [MMC] provides explanation

examples on encoding track (Inventory): www.movielabs.com/md/mmc

<delivery:AssetAvailability

...

 <delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 </delivery:Scope>

 <delivery:AssetDispostion>

 <delivery:Track>

 <md:Audio AudioTrackID="md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-G:audio.fr">

 <md:Type>Primary</md:Type>

 <md:Language>fr-FR</md:Language>

 </md:Audio>

http://www.movielabs.com/md/mmc

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 17

 </delivery:Track>

 <delivery:Track>

 <md:Audio AudioTrackID="md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-G:audio.en">

 <md:Type>Primary</md:Type>

 <md:Language>en</md:Language>

 </md:Audio>

 </delivery:Track>

 <delivery:StatusCode>available</delivery:StatusCode>

 </delivery:AssetDisposition>

</delivery:AssetAvailability>

 As noted above, if no response is needed (i.e., platform is taking everything), it makes

more sense just to use Media Manifest ([MMC]).

We’re assuming the AssetAvailability was sent because an AssetOrder is expected. An

Asset Order might look something like the following.

Note that the track IDs are known so these constitute the reference. In this example, only

the French track is ordered.

Note also that the RequestCode is ‘deliver’, which is the appropriate value when the asset

is known to exist.

<delivery:AssetOrder

...

 <delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 </delivery:Scope>

 <delivery:Asset>

 <delivery:RequestCode>deliver</delivery:RequestCode>

 <delivery:Reference>

 <delivery:Description>

 <delivery:MDDFID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.fr</delivery:AudioTrackID>

 </delivery:MDDFID>

 </delivery:Reference>

 </delivery:Asset>

</delivery:AssetOrder>

3.3 Platform Pull

The essential data in AssetOrder for a Pull are the RequestCode object and the

Description object. A Platform Pull would look something like this:

Studio Platform

Asset Availability
(listing all available assets)

Asset Order
(listing desired assets)

MMC + Assets

In this use case, the RequestCode is ‘request’. This code is valid whether or not the asset

is known to exist.

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 18

The AssetOrder/Description object is uses the same underlying types as

AssetAvailability/Track so the encoding is very similar. So, you’ll notice they are encoded

almost identically. However, there is key difference in this Pull use case: The Platform has no

knowledge of track identification which comes from AssetAvailability. Consequently, the

Description object has no track IDs.

<delivery:AssetOrder

...

 <delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 </delivery:Scope>

 <delivery:Asset>

 <delivery:RequestCode>request</delivery:RequestCode>

 <delivery:Description>

 <md:Audio>

 <md:Type>Primary</md:Type>

 <md:Language>fr-FR</md:Language>

 </md:Audio>

 </delivery:Description>

 </delivery:Asset>

</delivery:AssetOrder>

3.4 Negotiated exchange

As implied by the title, negotiation involves back and forth. The following example

illustrates the back-and-forth that is possible.

In this example case, the studio initiated the exchange. The platform requests an

additional track. And, it continues from there. It might look something like this:

Studio Platform

Asset Availability
(listing all available assets)

Asset Order
(listing desired assets, including asses not listed)

MMC + Assets

Asset Availability
(updated to respond to request)

Asset Order
(Updated to accept/reject updated Asset Availability)

A Studio-initiated exchange starts the same as Studio Push, using the example in that

Section (0).

The retailer’s response is an Order of existing assets. This is the same response as in

Section 0, but we’ve added a twist. The Platform is requesting a German audio track.

RequestCode indicates which one is expected to be delivered, and which one is

requested. Request dates are added (just to illustrate how these would appear).

<delivery:AssetOrder

...

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 19

 <delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 </delivery:Scope>

 <delivery:Asset>

 <delivery:Reference>

 <delivery:RequestCode>deliver</delivery:RequestCode>

 <delivery:ExpectedDelivery>2019-09-12</delivery:ExpectedDelivery>

 <delivery:Description>

 <delivery:MDDFID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.fr</delivery:AudioTrackID>

 </delivery:MDDFID>

 </delivery:Reference>

 <delivery:Description>

 <delivery:RequestCode>request</delivery:RequestCode>

 <delivery:ExpectedDelivery>2019-10-12</delivery:ExpectedDelivery>

 <md:Audio>

 <md:Type>Primary</md:Type>

 <md:Language>de</md:Language>

 </md:Audio>

 </delivery:Description>

 </delivery:Asset>

</delivery:AssetOrder>

The studio can respond with a revised AssetAvailability. The original AssetDisposition

remains the same, but a new AssetDisposition is added for the new request.

There are two possible responses: rejected and accepted.

Note the StatusCode values. For French, status is now ‘processing’. For English, which

was not requested, the status is still ‘available’. German was rejected.

<delivery:AssetAvailability

...

 <delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 </delivery:Scope>

 <delivery:AssetDispostion>

 <delivery:Track>

 <md:Audio AudioTrackID="md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-G:audio.fr">

 <md:Type>Primary</md:Type>

 <md:Language>fr-FR</md:Language>

 </md:Audio>

 </delivery:Track>

 <delivery:StatusCode>processing</delivery:StatusCode>

 <delivery:AssetDispostion>

 </delivery:AssetDisposition>

 <delivery:Track>

 <md:Audio AudioTrackID="md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-G:audio.en">

 <md:Type>Primary</md:Type>

 <md:Language>en</md:Language>

 </md:Audio>

 </delivery:Track>

 <delivery:StatusCode>available</delivery:StatusCode>

 </delivery:AssetDisposition>

 <delivery:AssetDispostion>

 <delivery:Track>

 <md:Audio>

 <md:Type>Primary</md:Type>

 <md:Language>de</md:Language>

 </md:Audio>

 </delivery:Track>

 <delivery:StatusCode>rejected</delivery:StatusCode>

 </delivery:AssetDisposition>

</delivery:AssetAvailability>

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 20

If it was accepted, you might see something like the following. Note that ‘available’

StatusCode indicates it is available to be ordered, but has not yet been ordered because there are

prices and dates to be determined. The delivery date is a month past the requested delivery date.

And, there’s a $200 price.

 <delivery:AssetDispostion>

 <delivery:Track>

 <md:Audio AudioTrackID="md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-G:audio.de">

 <md:Type>Primary</md:Type>

 <md:Language>de</md:Language>

 </md:Audio>

 </delivery:Track>

 <delivery:StatusCode>available</delivery:StatusCode>

 <delivery:ExpectedDelivery>2019-11-12</delivery:ExpectedDelivery>

 <delivery:BusinessTerms termName="price">

 <delivery:Money currency="usd">200</delivery:Money>

 </delivery:BusinessTerms>

 </delivery:AssetDisposition>

If the price is accepted, the platform responds with an AssetOrder. Note that the

ExpectedDelivery has been updated and the RequestCode is ‘deliver’.

<delivery:AssetOrder

...

 <delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 </delivery:Scope>

 <delivery:Asset>

 <delivery:Reference>

 <delivery:RequestCode>deliver</delivery:RequestCode>

 <delivery:ExpectedDelivery>2019-11-12</delivery:ExpectedDelivery>

 <delivery:Description>

 <delivery:MDDFID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.de</delivery:AudioTrackID>

 </delivery:MDDFID>

 </delivery:Reference>

 </delivery:Asset>

</delivery:AssetOrder>

On the other hand, if the terms are not acceptable, the request can be rejected.

 <delivery:Reference>

 <delivery:RequestCode>cancel</delivery:RequestCode>

 <delivery:Description>

 <delivery:MDDFID>

 <delivery:AudioTrackID>md:audiotrackid:eidr-x:AD07-310C-C59D-6785-C63A-

G:audio.de</delivery:AudioTrackID>

 </delivery:MDDFID>

 </delivery:Reference>

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 21

4 PRODUCT STATUS

This core spec focuses on the objects shown in the illustration, although the QC Report

structure is general enough to report on most anything (e.g., including Avails and Title List

issues).

Asset Processing/
Delivery

Asset Processing

Digital Assets

MEC / MMC / CPE

Product Status

The term “Product” is used loosely here. It essentially means a collection of media,

metadata and other data/files associated with some kind of offer. More specifically, it’s anything

in the purple boxes above (MEC, MMC, CPE, media, metadata, artwork, etc.).

4.1 General information

4.1.1 ProductStatus vs. ObjectStatus (from Avails and Title List)

While the purpose of OfferStatus (found in the Avails and Title List spec) is to provide

the business team with the status of a business offering, ProductStatus provides status to

technical operations/fulfillment staff. There is some overlap because business people need to

know if an offer is read to go, but detailed status is left to ProductStatus.

The primary difference between these elements is that AssetStatus reports detailed status

(and errors) for objects that exist, while ObjectStatus provides higher-level status for objects that

either already exist or are expected to exist.

Product Status might be used like this

Studio Platform

Product Status (QC)
(identifying rejected asset and error desription)

MMC + Assets

Product Status (general status)
(status of each asset)

Push

GET

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 22

In contrast, Offer Status would look like this

Studio Platform

Response is simple validation

Avail or Title List{ID}

OfferStatus

POST

GET Request for OfferStatus{ID}

Let’s say you’ve encountered an error in something delivered. By definition, it exists

(i.e., the error was found in something that exists). And, you want to report an error. The correct

element is AssetStatus. AssetStatus can also report progress on a specific asset (e.g., it is being

processed, it is ready, it has been rejected). Progress codes are found in [delivery], Section 2.3.6.

Let’s say an asset is expected but has not been delivered. Or, you want to report the

status of every asset, whether it has been delivered or not. ObjectStatus should be used.

Because ObjectStatus refers to objects that either exist or not—and we wanted to keep it

simple—there are only two attributes that can be used to describe the asset: Language and

component. Component says what it is, either in general term (media, artwork, other), or

specific terms (video, audio, timed text, descriptive, metadata, etc.). List of @component are in

ProductProgess-type section (5.2.1) in [delivery].

4.1.2 Scope

In ProductStatus, Scope indicates the general context of the status. Guidance for

encoding Scope can be found in Section 2.2.

However, since ProductStatus can refer to assets, the encoding described in Section

2.3.2.1 also applies.

4.1.3 Note on examples

Strictly for brevity, some examples below are not complete XML objects. The following

shows the missing element structure. A full XML document would include the following with

examples below replacing the ellipsis (…).

<?xml version="1.0" encoding="UTF-8"?>

<delivery:ProductStatus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:md="http://www.movielabs.com/schema/md/v2.8/md"

xmlns:manifest="http://www.movielabs.com/schema/manifest/v1.9/manifest"

xmlns:delivery="http://www.movielabs.com/schema/md/delivery/v1.0/delivery"

xsi:schemaLocation="http://www.movielabs.com/schema/md/delivery/v1.0/delivery delivery-v1.0.xsd">

 <delivery:Compatibility>

 <manifest:SpecVersion>1.0</manifest:SpecVersion>

 </delivery:Compatibility>

...

</delivery:ProductStatus>

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 23

4.2 Product Status

The general goal is to efficiently report status to determine if action needs to be taken.

ProductStatus is the root. Within ProductStatus, the key elements are Scope,

OverallProgressCode and ObjectStatus.

4.2.1 What status is reported on

AssetStatus using ObjectStatus provides a general mechanism for reporting status. It is

intended to provide high-level status on objects that already exist or are expected to exist. We

expect that when using ObjectStatus it is reporting on a large set of assets, perhaps all assets

associated with a title (via EIDR) or offer (via ALID).

The first division is around ObjectStatus/Category, with categories being things like

‘feature’, ‘supplemental’, ‘promotional’ (e.g., trailer) and ‘image’ (e.g., artwork). Within a

Category, there can be multiple assets.

Let’s say there are 100 assets (audio, video, timed text, metadata, artwork, etc.). Each

asset gets a ObjectStatus/Progress instance. Progress/@language indicates the language of the

asset (if applicable), and @component indicates the type of asset. As noted above, these can be

either general (media, artwork, other) or specific (video, audio, timed text, descriptive, metadata,

etc.).

4.2.2 ProgressCode

Progress Code is a concise means to report status. These are defined in [Delivery],

Section 2.3.6. As noted in that section, acceptable values depend on whether it’s referring to a

single asset or multiple assets.

In some cases, ProgressCode stands alone and the asset is known by the context.

<delivery:OverallProgressCode>Missing</delivery:OverallProgressCode>

In other cases, specifically, where OverallProgressCode is used, one can specify a single

overall progress code as well as progress codes for media, artwork, metadata, and other. Note

that because metadata is missing, the overall progress code must be “Issues”.

<delivery:OverallProgressCode Media=”Ready” artwork=”Ready”

metadata=”Missing”>Issue</delivery:OverallProgressCode>

In the example above, metadata was flagged as “missing”. This is ok because generally

there is only one metadata object. However, media and artwork can refer to multiple assets.

Consequently, “Missing” or “Error” can only be used when it applies to all assets. It’s generally

best practice to just use a progress code of “Issue”.

4.2.3 Reporting Overall Status

Overall status is reported using ProductStatus/OverallProgressCode. It is not necessary

to use ObjectStatus or AssetStatus.

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 24

The first essential element is Scope. This identifies the scope of the status. ALID is used

for deliveries associated with an ALID. EIDRURN is used for deliveries associated with a title

(generally an edit). This example uses and ALID. And, we’re going to constrain it further to be

the assets associated with the US. Note that since we did not specify Language or FormatProfile,

all languages and format profiles are covered.

The other necessary object is OverallProgressCode. Putting it together gives you this:

<delivery:Scope>

 <delivery:ALID>md:alid:eidr-s:AD07-310C-C59D-6785-C63A-G</delivery:ALID>

 <delivery:Region>

 <md:country>US</md:country>

 </delivery:Region>

</delivery:Scope>

<delivery:OverallProgressCode media=”Ready” artwork=”Ready”

metadata=”Missing”>Issue</delivery:OverallProgressCode>

This says that for the given ALID, in the US we’re waiting for metadata.

4.2.4 Reporting Asset Status by category, language and component

Often it is important to report status more precisely. This is done with the ObjectStatus

element.

Identification is the same as above. OverallProgressCode can be provided, although it is

redundant. If included, it must be consistent with the individual asset statuses. For example, if

an audio track is missing, media status must be “Missing” (i.e., waiting for track) or “Issue”

(e.g., waiting for track, and it’s late). Generally, status will be “Missing” immediately following

a request.

ObjectStatus contains the asset status. Within ObjectStatus, the Progress object is

required.

There are a variety of optional fields which might lead you to believe they are

unnecessary. That is incorrect. Some of these fields must be provided, but which ones depends

on what is being reported on.

Let’s say status is for the feature’s French subtitle.

<delivery:ObjectStatus>

 <delivery:Progress language="fr-FR" component="timed text">

 <delivery:ProgressCode>Missing</delivery:ProgressCode>

 </delivery:Progress>

</delivery:ObjectStatus>

Let’s say the status is for a teaser, add Category as follows:

<delivery:ObjectStatus>

 <delivery:Category purpose="teaser">supplemental</delivery:Category>

 <delivery:Progress language="fr-FR" component="timed text">

 <delivery:ProgressCode>Missing</delivery:ProgressCode>

 <delivery:ExpectedDate>2019-09-10</delivery:ExpectedDate>

 </delivery:Progress>

</delivery:ObjectStatus>

Let’s say you want to specify the date the asset is expected (typically by SLA)

<delivery:ObjectStatus>

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 25

 <delivery:Category purpose="teaser">supplemental</delivery:Category>

 <delivery:Progress language="fr-FR" component="timed text">

 <delivery:ProgressCode>Missing</delivery:ProgressCode>

 <delivery:ExpectedDate>2019-09-10</delivery:ExpectedDate>

 </delivery:Progress>

</delivery:ObjectStatus>

Multiple instances of Progress can be included to provide status on multiple objects

within a category. Let’s say we’re also missing video

<delivery:ObjectStatus>

 <delivery:Category purpose="teaser">supplemental</delivery:Category>

 <delivery:Progress language="fr-FR" component="timed text">

 <delivery:ProgressCode>Missing</delivery:ProgressCode>

 </delivery:Progress>

 <delivery:Progress component="video">

 <delivery:ProgressCode>Missing</delivery:ProgressCode>

 </delivery:Progress>

</delivery:ObjectStatus>

Multiple instances of ObjectStatus can be included as well. In the following example, the

feature is ready to go, but the teaser has a couple of issues.

<delivery:ObjectStatus>

 <delivery:Category >feature</delivery:Category>

 <delivery:Progress>

 <delivery:ProgressCode>Ready</delivery:ProgressCode>

 </delivery:Progress>

</delivery:ObjectStatus>

<delivery:ObjectStatus>

 <delivery:Category purpose="teaser">supplemental</delivery:Category>

 <delivery:Progress language="fr-FR" component="timed text">

 <delivery:ProgressCode>Missing</delivery:ProgressCode>

 </delivery:Progress>

 <delivery:Progress component="video">

 <delivery:ProgressCode>Missing</delivery:ProgressCode>

 </delivery:Progress>

</delivery:ObjectStatus>

4.2.5 Reporting Multiple Asset Status

If you need to get into details, use AssetStatus instead of ObjectStatus. AssetStatus

allows you to reference assets individually.

This is exactly like a QC/Error Report described in the next section, but without

ErrorDescription.

The following example says that an image with the given ID is missing.

<delivery:AssetStatus>

 <delivery:AssetReference>

 <delivery:MDDFID>

 <delivery:ImageID>md:imageid:eidr-x:AD07-310C-C59D-6785-C63A-G:hero1

 </delivery:ImageID>

 <delivery:MDDFID>

 </delivery:AssetReference>

 <delivery:ProgressCode>Missing</delivery:ProgressCode>

 <delivery:ErrorDescription>

</delivery:AssetStatus>

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 26

4.3 QC/Error Report

ProductStatus supports detailed error reporting. The structure of the response is dictated

by what broke and how it broke.

Reporting the error itself (e.g., Video Hits, A/V Sync error, etc.) is relatively

straightforward. Using QC Vocabulary found at www.movielabs.com/md/qcvocabulary, one can

select the most appropriate term for the error. One has the option of adding description and

specific parameters that expand upon the report (e.g., timecodes, regions of a picture, etc.).

Error reporting must precisely and unambiguously report what is broken so the studio or

service provider knows what to fix. Section 0 provides detail on how reference objects.

What differentiates an error report from general status reporting is a

ProductStatus/AssetStatus/ErrorDescription. This element defines the error, and what the error

applies to.

4.3.1 Simple Error Report

A minimal AssetStatus contains the following

• AssetReference that refers to the object in error (e.g., an audio track).

• ProgressCode with a code indicating a problem with content. Generally, this is “Error”.

• ErrorDescription including Error Category and Error Term based on the QC Vocabulary

(referenced above).

o Error category (ErrorDescription/ErrorCategory)

o Error Term (ErrorDescription/ErrorTerm)

In this simple example, we have a bad MMC delivery. The error category is

“DELIVERY-PACKAGE”. The Term is “INVALID-MANIFEST”. The Manifest ID is given.

<delivery:AssetStatus>

 <delivery:AssetReference>

 <delivery:MDDFID>

 <delivery:ManifestID>md:manifestid:eidr-s:AD07-310C-C59D-6785-C63A-G

 </delivery:ManifestID>

 <delivery:MDDFID>

 </delivery:AssetReference>

 <delivery:ProgressCode>Error</delivery:ProgressCode>

<delivery:ErrorDescription>

 <delivery:ErrorCategory>DELIVERY-PACKAGE</delivery:ErrorCategory>

 <delivery:ErrorTerm>INVALID-MANIFEST</delivery:ErrorTerm>

 <delivery:ErrorDescription>

</delivery:AssetStatus>

That’s all that is really needed.

4.3.2 Providing additional information in an Error Report

ErrorDescription contains CategorySpecificInfo to convey technical details around an

error. Which child element is used depends on the error. For example,

http://www.movielabs.com/md/qcvocabulary

Media Delivery

Core

Ref: TR-META-MDC
Version v1.0
Date: December 14, 2019

 27

CategorySpecificInfo/Audio is used for an audio error, and CategorySpecificInfo/Metadata is

used to report a metadata problem.

The following illustrates technical data associated with artwork. There is a pixelization

problem with the Hero 1 image in 100x100 area 300 pixels from the left and 400 pixels from the

bottom.

<delivery:AssetStatus>

 <delivery:AssetReference>

 <delivery:MDDFID>

 <delivery:ImageID>md:imageid:eidr-x:AD07-310C-C59D-6785-C63A-G:hero1

 </delivery:ImageID>

 <delivery:MDDFID>

 </delivery:AssetReference>

 <delivery:ProgressCode>Error</delivery:ProgressCode>

<delivery:ErrorDescription>

 <delivery:ErrorCategory>ARTWORK</delivery:ErrorCategory>

 <delivery:ErrorTerm>PIXELATION-BLURRY</delivery:ErrorTerm>

 <delivery:CategorySpecificInfo>

 <delivery:Artwork>

 <delivery:Area>

 <delivery:XOffset>300</delivery:XOffset>

 <delivery:YOffset>400</delivery:YOffset>

 <delivery:Width>100</delivery:Width>

 <delivery:Height>100</delivery:Height>

 </delivery:Area>

 </delivery:Artwork>

 </delivery:CategorySpecificInfo>

 <delivery:ErrorDescription>

</delivery:AssetStatus>

