Common Metadata

‘md’ namespace
CONTENTS

1. Introduction .. 1
 1.1 Overview of Common Metadata .. 1
 1.2 Document Organization .. 1
 1.3 Document Notation and Conventions .. 2
 1.3.1 XML Conventions .. 2
 1.3.2 General Notes .. 3
 1.4 Normative References ... 4
 1.5 Informative References ... 6
 1.6 Best Practices for Maximum Compatibility .. 6

2. Identifiers ... 8
 2.1 Identifier Structure ... 8
 2.1.1 ID Simple Types ... 9
 2.2 Asset Identifiers .. 9
 2.2.1 ContentID ... 9
 2.2.2 APID .. 11
 2.3 Organization ID ... 12

3. General Types Encoding ... 13
 3.1 Language Encoding .. 13
 3.2 Region encoding .. 13
 3.3 Date and Time encoding .. 13
 3.3.1 Duration .. 14
 3.3.2 Time ... 14
 3.3.3 Dates and times ... 14
 3.3.4 Date and time ranges .. 15
 3.4 String encoding .. 15
 3.5 Organization Naming and Credits ... 15
 3.5.1 CompanyDisplayCredit-type .. 16
 3.5.2 AssociatedOrg-type ... 16
 3.6 People Naming and Identification .. 17
 3.6.1 PersonName-type ... 17
 3.6.2 PersonIdentifier-type .. 18
 3.7 Money-type and Currency ... 18
 3.8 Role Encoding, Role-type ... 18
 3.9 Keywords Encoding .. 19
 3.9.1 Name/Value Pairs, NVPair-type, NVPairMoney-type ... 19
 3.10 Personal/Corporate Contact Information, ContactInfo-type 19
 3.11 Cryptographic Hash .. 20
 3.12 GroupingEntity-type .. 20
 3.13 Private Data ... 21
 3.14 MIME ... 21

4. Basic Metadata ... 22
 4.1 BasicMetadata-type ... 22
Common Metadata

4.1.2 BasicMetadataInfo-type ... 29
4.1.3 ContentIdentifier-type ... 32
4.1.4 BasicMetadataPeople-type .. 33
4.2 Compilation Object ... 36
4.2.1 CompObj-type ... 36
4.2.2 CompObjID-type .. 37
4.2.3 CompObjData-type .. 37
4.2.4 Comp-ObjEntry-type ... 38
5 Digital Asset Metadata ... 40
5.1 Digital Asset Metadata Description ... 40
5.2 Definitions .. 40
5.2.1 DigitalAssetMetadata-type and DigitalAssetSet-type 40
5.2.2 DigitalAssetAudioData-type .. 41
5.2.3 DigitalAssetAudioEncoding-type ... 43
5.2.4 DigitalAssetVideoData-type ... 47
5.2.5 DigitalAssetVideoEncoding-type ... 49
5.2.6 DigitalAssetVideoPicture-type ... 53
5.2.7 DigitalAssetSubtitleData-type ... 63
5.2.8 DigitalAssetImageData-type ... 66
5.2.9 DigitalAssetInteractiveData-type ... 67
5.2.10 DigitalAssetWatermark-type .. 70
5.2.11 Cards .. 71
5.2.12 DigitalAssetAncillary-type ... 73
6 Container Metadata ... 75
6.1 Container Metadata Description .. 75
6.2 Definitions .. 75
6.2.1 ContainerMetadata-type ... 75
6.2.2 ContainerProfile-type ... 78
7 Content Ratings .. 79
7.1 Description .. 79
7.2 Rules .. 79
7.3 Definition ... 79
7.3.1 ContentRating-type ... 79
7.3.2 ContentRatingDetail-type ... 80
8 Content Rating Encoding .. 82
9 Selected Examples .. 83
9.1 People Name Examples ... 83
9.2 Release History Example ... 87
9.3 Content Rating Examples ... 88
10 Redefine Support ... 90
10.1 General XML Type Redefines ... 90
10.2 Type-specific Redefines ... 90
10.2.1 Identifiers .. 90
10.2.2 Basic Metadata ... 91
10.2.3 Digital Asset Metadata .. 92
NOTE: No effort is being made by the Motion Picture Laboratories to in any way obligate any market participant to adhere to Common Metadata. Whether to adopt the Common Metadata in whole or in part is left entirely to the individual discretion of individual market participants, using their own independent business judgment. Moreover, Motion Picture Laboratories disclaims any warranty or representation as to the suitability of the Common Metadata for any purpose, and any liability for any damages or other harm you may incur as a result of subscribing to this Common Metadata.
REVISION HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>January 5, 2010</td>
<td>Original Version</td>
</tr>
<tr>
<td>1.1</td>
<td>January 6, 2011</td>
<td>Incorporates corrections.</td>
</tr>
<tr>
<td>1.2</td>
<td>November 1, 2011</td>
<td>Incorporates corrections and enhancements, primarily to support derived specifications.</td>
</tr>
<tr>
<td>1.2a-1.2e</td>
<td>May 29, 2012, September 24, 2012, October 11, 2012</td>
<td>Minor schema alignment (no schema changes), EIDR IDs, additions to controlled vocabularies, Ratings improvements, and minor corrections and additions.</td>
</tr>
<tr>
<td>2.0</td>
<td>January 3, 2013</td>
<td>Major revision</td>
</tr>
<tr>
<td>2.0a</td>
<td>January 7, 2013</td>
<td>Minor corrections to 2.0.AF</td>
</tr>
<tr>
<td>2.1</td>
<td>June 30, 2013</td>
<td>Minor revision with schema changes</td>
</tr>
<tr>
<td>2.1a-c</td>
<td>January 4, 2013</td>
<td>Minor text corrections. References added to new Common Metadata Ratings to avoid duplication. Addition of VP9 codec. Note: no schema changes.</td>
</tr>
<tr>
<td>2.2</td>
<td>October 2, 2014</td>
<td>Added color authoring/encoding. Added video enhancement layer enumeration. Added codecs.</td>
</tr>
<tr>
<td>2.3</td>
<td>February 9, 2015</td>
<td>Minor corrections, new enumerations, etc. Added Ancillary track type to Digital Asset Metadata Added HDR metadata Added UHDImage flag in subtitle Entry in Compilation made optional</td>
</tr>
<tr>
<td>2.3a</td>
<td>March 24, 2015</td>
<td>Added VBR and BitRateAverage to video encoding (has been in schema since v2.0)</td>
</tr>
<tr>
<td>Version</td>
<td>Date</td>
<td>Changes</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>2.3b</td>
<td>June 3, 2015</td>
<td>Added WhitePointChromaticity to spec (was correct in schema).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added ‘App’ and ‘Gallery’ enumerations for WorkType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clarified enumerations of SDRDownConversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clarified ‘cardset’ language.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added DTS:X codec.</td>
</tr>
<tr>
<td>2.3c</td>
<td>July 1, 2015</td>
<td>Corrected cardinality on Image Language and Cardset Description.</td>
</tr>
<tr>
<td>2.4</td>
<td>October 13, 2015</td>
<td>This release adds a variety of small features to support specific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross-Platform Extras and Media Manifest Core use cases.</td>
</tr>
<tr>
<td>2.5</td>
<td>December 16, 2016</td>
<td>Support for Immersive video including VARM (Virtual, Augmented and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixed Reality) and 360 Video</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved image and interactive Digital Asset data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numerous changes to support supply chain use cases.</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

The B2B transfer of media requires metadata to describe that media. Several activities underway at the time of this document’s authoring have metadata needs that overlap. This document in conjunction with associated XML schemas defines the content and one possible encoding of such data.

This is designed as a resource. Those using this specification may extend the definition with additional data element specific for their needs. They may replace elements with others perhaps more suitable to their needs; however, for interoperability all are highly encouraged to use the data elements exactly as defined.

1.1 Overview of Common Metadata

Common Metadata includes elements that cover typical definitions of media, particularly movies and television. Common Metadata has two parts: Basic Metadata and Digital Asset Metadata. Basic Metadata includes descriptions such as title and artists. It describes information about the work independent of encoding. Digital Asset metadata describes information about individual encoded audio, video and subtitle streams, and other media included. Package and File Metadata describes one possible packaging scenario and ties in other metadata types. Ratings and Parental Control information is described.

Common Metadata is designed to provide definitions to be inserted into other metadata systems. A given metadata scheme, for example, the Entertainment Merchant’s Association (EMA) may select element of the Common Metadata to be used within its definitions. EMA would then define additional metadata to cover areas not included in Common Metadata.

1.2 Document Organization

This document is organized as follows:

1. Introduction—Provides background, scope and conventions
2. Identifiers—Specification of identifiers used to reference metadata.
3. General Types Encoding—Specific of encoding methods (e.g., language, region).
4. Basic Metadata—Content descriptive metadata definition
5. Digital Asset Metadata—Encoded media metadata definition
6. Container Metadata – Metadata describing media containers
7. Content Rating—Methods for encoding content ratings
8. Content Rating Encoding—Content Ratings can now be found in Common Metadata Content Ratings at www.movielabs.com/md/ratings.
9. Examples
10. Redefine Support – Information on using schema features to tightly control vocabulary
1.3 Document Notation and Conventions

As a general guideline, the key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119]. That is:

- “MUST”, “REQUIRED” or “SHALL”, mean that the definition is an absolute requirement of the specification.
- “MUST NOT” or “SHALL NOT” means that the definition is an absolute prohibition of the specification.
- “SHOULD” or “RECOMMENDED” mean that there may be valid reasons to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.
- “SHOULD NOT” or “NOT RECOMMENDED” mean that there may be valid reasons when the particular behavior is acceptable, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.
- “MAY” or “OPTIONAL” mean the item is truly optional, however a preferred implementation may be specified for OPTIONAL features to improve interoperability.

Terms defined to have a specific meaning within this specification will be capitalized, e.g. “Track”, and should be interpreted with their general meaning if not capitalized.

Normative key words are written in all caps, e.g. “SHALL”.

Normative requirements need not use the formal language above.

1.3.1 XML Conventions

XML is used extensively in this document to describe data. It does not necessarily imply that actual data exchanged will be in XML. For example, JSON may be used equivalently.

This document uses tables to define XML structure. These tables may combine multiple elements and attributes in a single table. Although this does not align with schema structure, it is much more readable and hence easier to review and to implement.

Although the tables are less exact than XSD, the tables should not conflict with the schema. Such contradictions should be noted as errors and corrected.

1.3.1.1 Naming Conventions

This section describes naming conventions for Common Metadata XML attributes, element and other named entities. The conventions are as follows:

- Names use initial caps, as in InitialCaps.
- Elements begin with a capital letter, as in InitialCapitalElement.
• Attributes begin with a lowercase letter, as in initiaLowercaseAttribute.
• XML structures are formatted as Courier New, such as md:id-type
• Names of both simple and complex types are followed with “-type”

1.3.1.2 Structure of Element Table

Each section begins with an information introduction. For example, “The Bin Element describes the unique case information assigned to the notice.”

This is followed by a table with the following structure.

The headings are

• Element—the name of the element.
• Attribute—the name of the attribute
• Definition—a descriptive definition. The definition may define conditions of usage or other constraints.
• Value—the format of the attribute or element. Value may be an XML type (e.g., “string”) or a reference to another element description (e.g., “See Bar Element”). Annotations for limits or enumerations may be included (e.g., “int [0..100]” to indicate an XML xs:int type with an accepted range from 1 to 100 inclusively)
• Card—cardinality of the element. If blank, then it is 1. Other typical values are 0..1 (optional), 1..n and 0..n.

The first row of the table after the header is the element being defined. This is immediately followed by attributes of this element, if any. Subsequent rows are child elements and their attributes. All child elements (i.e., those that are direct descendants) are included in the table. Simple child elements may be fully defined here (e.g., “Title”, “ ”, “Title of work”, “xs:string”), or described fully elsewhere (“POC”, “ ”, “Person to contact in case there is a problem”, “md:ContactInfo-type”). In this example, if POC was to be defined by a complex type defined as md:ContactInfo-type. Attributes immediately follow the containing element.

Accompanying the table is as much normative explanation as appropriate to fully define the element, and potentially examples for clarity. Examples and other informative descriptive text may follow. XML examples are included toward the end of the document and the referenced web sites.

1.3.2 General Notes

All required elements and attributes must be included.

When enumerations are provided in the form ‘enumeration’, the quotation marks (‘”’) should not be included.

UTF-8 [RFC3629] encoding shall be used when ISO/IEC 10646 (Universal Character Set) encoding is required.
1.4 Normative References

[TR-META-CR] Common Metadata Content Ratings. [Website: www.movielabs.com/md/ratings]. Note that a specific version is not referenced as it is intended that the latest version will be used. Referencing specifications may select a specific version of the referenced document.

[CEA861.3] CEA Standard, HDR Static Metadata Extensions, CEA-861.3, January 2015

[EIDR-TO] EIDR Technical Overview, November 2010. [Website: http://eidr.org/technology/#docs]

[IANA-MIME] IANA Media Types Registry. [Website: http://www.iana.org/assignments/media-types]

[IMSC1] TTML Profiles for Internet Media Subtitles and Captions 1.0 (IMSC1), W3C Recommendation 21 April 2016, [Website: https://www.w3.org/TR/ttml-imsc1/]

[ITT] iTunes Timed Text from iTunes Packaged Film Specification.

1.5 Informative References

[EIDR] Entertainment Identifier Registry (EIDR), http://eidr.org/resources/

European Broadcast Union, Tech 3295 – P_META Metadata Library, https://tech.ebu.ch/MetadataSpecifications

The following metadata standards activities have numerous associated specifications. Rather than listing each specification, sites where specifications can be found are listed.

- AMPAS – Academy of Motion Picture Arts and Sciences http://www.oscars.org/science-technology/council/projects/index.html
- MPEG – Motion Pictures Experts Group http://mpeg.chiariglione.org/
- Dublin Core Metadata Initiative: http://dublincore.org/
- TV Anytime (ETSI) http://www.tv-anytime.org/
- PBCore: www.pbcore.org

1.6 Best Practices for Maximum Compatibility

Metadata typically evolves with the addition of new elements, attributes and vocabularies. Existing applications should be capable of accepting metadata, even though there might be more data than expected. Strict XML validation precludes an orderly evolution and can be counterproductive to the flexibility needed in real implementations.
Metadata specifications and schema updates are designed to support backwards compatibility. For example, element and attributes can be added, but required elements are not removed; or more generally ordinality of elements and attributes can be widened but not narrowed. Values are not changed in either syntax or semantics. Therefore, we strongly encourage implementations to either be diligent in tracking to the latest version, or follow the backwards compatibility rules provided here.

An XML document is considered compatible if its structure does not preclude the extraction of data from the document. For example, a document with additional elements and attributes do not preclude schema parsing and data extraction.

- Do not reject compatible XML documents, unless they fail schema validation against the definition for an exact version/namespace match.
- Extract data from compatible XML documents whenever possible.
- It is allowable to ignore elements and attributes whose presence is not allowed in the specification and schema versions against which the implementation was built. For example, if the original schema allows one instance and three instances are found, the 2nd and 3rd instance may be ignored.

We will try to update metadata definitions such that following these rules work consistently over time. Sometimes, changes must be made that are not always backwards compatible, so we will do our best to note these.
2 IDENTIFIERS

Identifiers and metadata are closely linked. In essence, all identifiers have corresponding metadata that describes the object being identified. Just as it is useful to distinguish between different kinds of objects with different kinds of identifiers, it is useful to distinguish the metadata in terms of those same objects.

The primary objects being identified and described in metadata are:

- Content – Content ID (ContentID)
- Encoded Stream – Physical Asset (Asset Physical ID; APID)

2.1 Identifier Structure

The primary requirement for identifiers is globally uniqueness. Individual systems using Common Metadata are free to use own identifiers as long as there is no identifier collision.

The following represents a structure for identifiers that should be used if specific usage does not specify otherwise. This structure is designed around the following principles:

- Global uniqueness
- Coexistence of identifier schemes (ID Federation)
- Ability to use identifiers within a URL

Common Metadata identifiers use the general structure of the “urn:” URI scheme as discussed in RFC 3986 (URN) and RFC 3305 with a “md” namespace identifier (NID). However, for Common Metadata, rather than the fully articulated “urn:md” we abbreviate to “md:”. The basic structure for a Common Metadata ID is:

\[
\text{<MDID> ::= “md:”<type> “:”<scheme>“:”<SSID>}
\]

- <type> is the type of identifier. These are defined in sections throughout the document defining specific identifiers.
- <scheme> is either a Common Metadata recognized naming scheme (e.g., “ISAN”) or “org” non-standard naming. These are specific to ID type and are therefore discussed in sections addressing IDs of each type.
- <SSID> (scheme specific ID) is a string that corresponds with IDs in scheme <scheme>. For example, if the scheme is “ISAN” then the <SSID> would be an ISAN number.

There is a special case where <scheme> is “org”. This means that the ID is assigned by a recognized organization within their own naming conventions. If <scheme> is “org” then:

\[
\text{<SSID> ::= <organization><UID>}
\]

- <organization> is a unique name assigned to an organization, with the following rules:
 - Organization is defined as domain name. For example, movielabs.com becomes md:org:movielabs.com:... and bbc.co.uk becomes md:org:bbc.co.uk:...
 - Other naming schemes may be used in contexts where names can be assigned within the scope of ID usage.
• `<UID>` is a unique identifier assigned by the organization identified in `<organization>`. Organizations may use any naming convention as long as it complies with RFC 3986 syntax.

Some sample identifiers are

- **ContentID:** `md:cid:EIDR:10.5240%2fF592-58D1-A4D9-E968-5435-L`
- **Content ID:** `md:cid:ISAN:0000-3BAB-9352-0000-G-0000-0000-Q`
- **Content ID:** `md:cid:org:MYSTUDIO:12345ABCDEF`

2.1.1 ID Simple Types

The simple type `md:id-type` is the basic type for all IDs. It is XML type `xs:anyURI`. All identifiers are case insensitive and should be registered in canonical format and case sensitive identifiers should not be used.

The simple types ContentID-type AssetLogicalID-type and AssetPhysicalID-type are defined as `md:id-type` and can be used when a more specific designation is required.

2.2 Asset Identifiers

Content Identifiers are assigned by the content owner or its designee. The following scheme provides flexibility in naming while maintaining uniqueness.

Common Metadata defines two types of asset identifiers:

- A Content Identifier (ContentID) denotes an abstract representation of a content item.
- Asset Physical Identifier (APID) refers to a physical entity (i.e., a file) that is associated with content.

2.2.1 ContentID

Syntax:

```
"md:cid:"<scheme>"::"<SSID>
```

A ContentID points to Basic metadata. ContentIDs may refer to abstract items such as shows or seasons, even if there is no separate asset for that entity. A ContentID must be globally unique.

The following restrictions apply to the `<scheme>` and `<SSID>` part of a ContentID:

- A ContentID scheme may not contain the colon character.
- Where display formats exist (i.e., human readable versus computer-readable) use display format.
- ContentID `<scheme>` and ContentID `<SSID>` shall be in accordance with Table 2-1. Additional schemes may be added in the future.

Table 2-1: Content Identifier Scheme and Value
### Scheme	Expected value for <SSID>
ISAN | An `<ISAN>` element, as specified in ISO15706-2 Annex D.
TVG | TV Guide
AMG | AMG
IMDB | IMDB
MUZE | Muze
TRIB | Tribune
Baseline | Baseline Research ID, www.baselineresearch.com
UUID | A UUID in the form 8-4-4-4-12
URI | A URI; this allows compatibility with TVAnytime and MPEG-21
GRid | A Global Release identifier for a music video; exactly 18 alphanumeric characters
EIDR | Entertainment ID Registry. http://www.eidr.org. In accordance with [ISO26324] and [EIDR-TO]
EIDR-S | Entertainment ID Registry. http://www.eidr.org.EIDR-S is a shortened EIDR that does not include the “10.5240/” prefix.
EIDR-X | Entertainment ID Registry. http://www.eidr.org.EIDR-X is an extended form of EIDR-S. EIDR-X is an EIDR-S form identifier followed by a colon (”.”) and an extension string. The extension string shall contain ASCII characters, with the exception of URN Reserved Characters [RFC2141], Section 2.3 and URN Excluded Characters [RFC21451], Section 2.4.
ISRC | Master recordings, ISO 3901, http://www.ifpi.org/content/section_resources/isrc.html
ISWC | Musical Works, http://www.cisac.org
SMPTE-UMID | SMPTE-UMID as per SMPTE ST 330-2004
Ad-ID | Ad-ID as per format defined at http://www.ad-id.org/how-it-works/ad-id-structure
Identifiers that contain URI shall use Percent-Encoding as per [RFC3986] for characters not allows in URNs as per [RFC2141]. For example, space (SP) is replaced by ‘%20’ and slash (‘/’) is replaced by ‘%2f’. For example,

EIDR: 10.5240/F592-58D1-A4D9-E968-5435-L

2.2.2 APID

Syntax: “md:apid:<scheme>“:”<SSID>”[“:”<extension>]

An APID is constrained as follows:

- Each APID is globally unique

The following restrictions apply to the <scheme>, <SSID> and <extension> part of an APID:

- An APID scheme may not contain the colon character
- Where display formats exists (i.e., human readable versus computer-readable) use display format.
- APID < scheme> and APID <SSID> shall be structured the same as ContentID
- Optional <extension> is additional characters appended to the APID and may not contain colons

For example

- APID: md:apid:ISAN:0000-3BAB-9352-0000-G-0000-0000-Q:p1
Note that APIDs may be constructed from ContentIDs. For example:

- **ContentID**: `md:cid:org:MyCompany:ABCDEFG`
 APID: `md:apid:org:MyCompany:ABCDEFG:100`

- **ContentID**: `md:cid:ISAN:0000-3BAB-9352-0000-G-0000-0000-Q`
 APID: `md:apid:ISAN:0000-3BAB-9352-0000-G-0000-0000-Q:A203`

2.3 Organization ID

Common Metadata assumes one additional type be provided. That is an Organization ID (`OrgID`). `md:orgID-type` is a simple type of type `md:id-type`.

Currently, there is not an adequate global identification scheme, so this element should be used only if both the sending and receiving parties have an a priori agreement regarding the contents of this ID.
3 GENERAL TYPES ENCODING

3.1 Language Encoding

Language shall be encoded in accordance with RFC 5646, *Tags for Identifying Languages* [RFC5646]. The subtags that are available for use with RFC 5646 are available from the Internet Assigned Numbers Authority (IANA) at [IANA-LANG]

Matching, if applicable, should be in accordance with RFC 4647, *Matching Language Tags*, [RFC4647].

The xs:language type shall be used for languages. Language should be as specific as possible; for example, ‘ja-kata’ is preferable to ‘ja’.

3.2 Region encoding

Common Metadata shall use the following type for region:

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>country</td>
<td></td>
<td>ISO 3166-1 Alpha 2 code</td>
<td>xs:string Pattern: “[A-Z][A-Z]”</td>
<td>(choice)</td>
</tr>
</tbody>
</table>

The MadeforRegion-type simple type is a restriction of xs:string that allows country code, ‘Domestic” or “International”. For example, it could be “US”, “Domestic” or “International”.

3.3 Date and Time encoding

Date and time encoding shall use the XML rules. That is, where ISO 8601 [ISO8601] deviates from XML encoding, XML encoding shall apply.
3.3.1 Duration

Durations are represented using `xs:duration`. `xs:time` should not be used for duration.

3.3.2 Time

`xs:time` is used for a recurring time.

3.3.3 Dates and times

XML is fairly rigid in its date and time encoding rules. Specifically, it is difficult to have a single element where resolution may range from ‘year’ to ‘date’ to ‘time’. In some instances such as air dates/time, resolution might be year (movie released in 1939), date (movie released on December 25, 2009), or date and time (episode aired November 6, 2001, or November 6, 2001, 10:00 PM EST).

- Year encoding uses `xs:gYear` (Gregorian year)
- Date encoding (year, month and day) uses `xs:date`
- Date encoding that includes both date and time shall uses `xs:dateTime`

Time zone should be included with `xs:dateTime` elements to avoid ambiguity. If representing a single point in time with no relevant time zone, Coordinated Universal Time (UTC) should be used.

In some cases, there are options for including year, date and date-time. Optional elements should be included if known and relevant.

As of version 1.2 of this specification, a new type has been define to support elements that require year, date (year and day), or time (including date) without a priori knowledge of the resolution. This simple type is YearDateOrTime-type.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>YearDateOrTime-type</td>
<td></td>
<td>A simple type that syntactically allows the inclusion of a year, a date or a date-time.</td>
<td><code>xs:union with memberTypes of xs:gYear, xs:date, xs:dateTime</code></td>
<td></td>
</tr>
</tbody>
</table>
3.3.4 Date and time ranges

Date Ranges may be encoded using the DateTimeRange-type:

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateTimeRange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
<td>Start of time period</td>
<td>xs:dateTime</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td>End of time period</td>
<td>xs:dateTime</td>
<td></td>
</tr>
</tbody>
</table>

3.4 String encoding

String lengths are specified in characters (rather than bytes) unless otherwise stated. A string using double-byte Unicode characters can result in string elements whose actual size in bytes is larger than the stated length.

3.5 Organization Naming and Credits

Organization names shall include both a user-friendly display name and a sortable name. If the display name and the sort name are the same, the SortName element may be excluded.

All names are optional in the schema although DisplayName is generally required. It is necessary to supply either DisplayName or the combination of organizationID and idType.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OrgName-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>organizationID</td>
<td></td>
<td>Organization's unique ID</td>
<td>md:orgID-type</td>
<td>0..1</td>
</tr>
<tr>
<td>idType</td>
<td></td>
<td>ID scheme used for organizationID</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>DisplayName</td>
<td></td>
<td>General display format. Safest to use as it accommodates various permutation on the name.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>SortName</td>
<td></td>
<td>Sortable version of name. This will often be last name first. This may be displayed.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>AlternateName</td>
<td></td>
<td>Other names for this organization</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
</tbody>
</table>
3.5.1 CompanyDisplayCredit-type

This type describes the intended audience for metadata:

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetadataCompanyCredits-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DisplayString</td>
<td></td>
<td>String to be displayed.</td>
<td>md:OrgName-type</td>
<td>0..n</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td>Language of DisplayString. If blank, then all languages</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td>Region(s) for which credits apply.</td>
<td>md:Region-type</td>
<td>0..n</td>
</tr>
<tr>
<td>DisplaySequence</td>
<td></td>
<td>Order of display. Lower-numbered entries are displayed before higher-numbered entries.</td>
<td>xs:integer</td>
<td>0..1</td>
</tr>
</tbody>
</table>

3.5.2 AssociatedOrg-type

This is an organization with a Role:

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AssociatedOrg-type</td>
<td></td>
<td></td>
<td>md:OrgName-type</td>
<td></td>
</tr>
<tr>
<td>role</td>
<td></td>
<td>Role of the associated organization</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
</tbody>
</table>

The AssociatedOrg element provides information about organizational entities involved in the production, distribution, broadcast or other function relating to the asset. Often organizations provide different functions, so multiple organizations can be listed. The role attribute to AssociatedOrg may have one of the following values:

- ‘producer’ – involved in the production of the asset
- ‘broadcaster’ – network associated with asset’s broadcast
- ‘distributor’ – entity involved with distribution
- ‘editor’ - editor
- ‘encoding’ – entity that encodes media
- ‘post-production’ – entity that performs post-production functions, not in another category
- ‘licensor’ – Entity offering license for this asset. Generally, this is used only with avails.
- ‘other’ – any organization that does not fall into the previous categories.
3.6 People Naming and Identification

This section describes the internationalized naming approach used for encoding metadata. This section also defines person identification for the purposes of metadata.

3.6.1 PersonName-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PersonName-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DisplayName</td>
<td>language</td>
<td>Person's name for display purposes.</td>
<td>xs:string</td>
<td>1..n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language of DisplayName. There may be multiple instances of DisplayName, but only with unique language attributes.</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>SortName</td>
<td>language</td>
<td>Name used to sort. May be excluded if identical to DisplayName.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language of SortName. There may be multiple instances of SortName, but only with unique language attributes.</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>FirstGivenName</td>
<td></td>
<td>First name</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>SecondGivenName</td>
<td></td>
<td>Second name</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>FamilyName</td>
<td></td>
<td>Family name</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Suffix</td>
<td></td>
<td>Suffix</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Moniker</td>
<td></td>
<td>Alternative name, usually of the form <code><FirstGivenName></code> "<Monikor>" <code><FamilyName></code> (e.g., Scatman in Benjamin Sherman "Scatman" Crothers). Note, Moniker is misspelled but retained for backwards compatibility.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
</tbody>
</table>
3.6.2 PersonIdentifier-type

Assuming there is an identifier associated with the person, this structure holds information about that identifier.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PersonIdentifier-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td></td>
<td>Identifier associated with this individual within the Namespace</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>Namespace</td>
<td></td>
<td>Namespace for identifier.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>ReferenceLocation</td>
<td></td>
<td>Location associated for the identifier within the namespace. This is expected to be an online reference to information about the individual.</td>
<td>xs:anyURI</td>
<td></td>
</tr>
</tbody>
</table>

3.7 Money-type and Currency

Currency shall be encoded using ISO 4217 Alphabetic Code [ISO4217].

http://www.iso.org/iso/currency_codes_list-1

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>currency</td>
<td>Currency as expressed in ISO 4217 Currency Alphabetic Code. For example, ‘USD” for US Dollars.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td>Value</td>
<td>xs:decimal</td>
<td></td>
</tr>
</tbody>
</table>

[ISO4217] typically allows two or three digits after the decimal. However, Value in this element may have as many decimal places as necessary.

3.8 Role Encoding, Role-type

Roles shall be encoded in accordance with ‘Term’ column of EBU Role codes found here: http://www.ebu.ch/metadata/cs/web/ebu_RoleCodeCS_p.xml.htm, plus “Other Group” and “Other” (referring to an unclassified individual).

Roles are defined in the simple type md:Role-type.

The JobFunction element allows for alternate schemes, however the scheme attribute is not supported at this time. At a future release, alternate schemes may be defined.
3.9 Keywords Encoding

Keywords are often culturally specific, so different keywords may exist for different regions. At this time, no keywords are defined.

3.9.1 Name/Value Pairs, NVPair-type, NVPairMoney-type

Use of Name/Value pairs provides considerable flexibility for growth. The NVPair-type complex type allows for any additional business data to be included in tuple format.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVPair-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>Identification of the parameter being specified</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td>Value specified for Name.</td>
<td>xs:string</td>
<td></td>
</tr>
</tbody>
</table>

NVPairMoney-type is like NVPair-type except the Value is currency-based.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVPairMoney-type</td>
<td></td>
<td></td>
<td>avail:Money-type</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>Identification of the parameter being specified</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td>Value specified for Name.</td>
<td>avail:Money-type</td>
<td></td>
</tr>
</tbody>
</table>

3.10 Personal/Corporate Contact Information, ContactInfo-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContactInfo-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>Person or point of contact</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>PrimaryEmail</td>
<td></td>
<td>Primary email address for user.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>AlternateEmail</td>
<td></td>
<td>Alternate email addresses, if any</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td>Mail address</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>Phone</td>
<td></td>
<td>Phone number. Use international (i.e., +1 ...) format.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
</tbody>
</table>
3.11 Cryptographic Hash

The Hash-type definition describes a cryptographic hash such as SHA-1 and MD5.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash-type</td>
<td></td>
<td>Value of the cryptographic hash or error</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>detection/correction code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>method</td>
<td></td>
<td>The hash generation method.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
</tbody>
</table>

Values for method include:
- ‘SHA-0’, ‘SHA-1’, ‘SHA-2’, ‘SHA-3’. SHA (Secure Hash Algorithm) family of algorithms. Distinction between hashes of different length is implicit in the hash and should not be mentioned specifically. For example, use ‘SHA-2’, not ‘SHA-224’.
- ‘CRC16’, ‘CRC32’, ‘CRC64’ – Cyclic Redundancy Check (CRC).

3.12 GroupingEntity-type

Grouping Entity type allows logical grouping of assets. This is typically around studio or network, but it can be any logical content grouping.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupingEntity-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>The type of the group.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>GroupingIdentity</td>
<td></td>
<td>A string that uniquely identifies the group.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>DisplayName</td>
<td></td>
<td>A string that will be displayed when referring to this group.</td>
<td>xs:string</td>
<td>1..n</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td>The language associated with the DisplayName. If language is absent, DisplayName applies to all languages.</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td>Region where group applies. If Region is absent, the group applies internationally.</td>
<td>md:Region-type</td>
<td>0..1</td>
</tr>
</tbody>
</table>

Type defines the type of grouping. Currently, the only defined value is “publisher”, although other values are not prohibited.
“publisher” indicates the grouping is around the organization publishing the content. Note that the actual publisher may differ from the publisher visible to the consumer. In that case, the GroupIdentity would reflect the actual publisher and the DisplayName would reflect the publisher familiar to the consumer.

3.13 Private Data

The following is defined to allow schemas using Common Metadata to extend elements with data specific to that use. Interoperability will be very limited, elements of this type should be used with extreme caution.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrivateData-type</td>
<td></td>
<td>Value of the cryptographic hash</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>(any)</td>
<td></td>
<td>Any data outside of ‘md’ namespace.</td>
<td>xs:any #other</td>
<td>1..n</td>
</tr>
</tbody>
</table>

3.14 MIME

MIME encoding is in accordance with [IANA-MIME].

Using images as an example, MIME types are encoded here: http://www.iana.org/assignments/media-types/media-types.xhtml#image. Encoding for JPEG must be ‘/image/jpeg’, not ‘/image/jpg’, ‘jpg’ or ‘jpeg’.
4 BASIC METADATA

Basic Metadata is a set of data that are essentially ubiquitous in content systems. They may be used throughout.

4.1 BasicMetadata-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BasicMetadata-type</td>
<td>ContentID</td>
<td>Content ID in Section 2.</td>
<td>md:ContentID-type</td>
<td></td>
</tr>
<tr>
<td>UpdateNum</td>
<td></td>
<td>Version of the metadata. Initial release should be 1. This is a value assigned by the metadata creator that should only be incremented if a new version of metadata is released. If absent, 1 is to be assumed. This is assigned by the metadata originator.</td>
<td>xs:int</td>
<td>0..1</td>
</tr>
<tr>
<td>LocalizedInfo</td>
<td></td>
<td>Instances of localized metadata.</td>
<td>md:BasicMetadataInfo-type</td>
<td>1..n</td>
</tr>
<tr>
<td>RunLength</td>
<td></td>
<td>Approximate Runlength of the referenced work (not the original product). Resolution SHALL be at least minutes. Resolution should be seconds or better. For a season or series, this should either be zero or the typical length of an episode. For broadcast, this should be the content length (e.g., an hour show with commercials might have a 44 minute RunLength).</td>
<td>xs:duration</td>
<td></td>
</tr>
<tr>
<td>ReleaseYear</td>
<td></td>
<td>The year of original release. This applies to the version that is being released.</td>
<td>xs:gYear</td>
<td></td>
</tr>
<tr>
<td>ReleaseDate</td>
<td></td>
<td>Year, Date or Date and Time of release or original air date. Adds month and day information to ReleaseYear. The year part of ReleaseDate must match ReleaseYear.</td>
<td>md:YearDateOrTime</td>
<td>0..1</td>
</tr>
<tr>
<td>ReleaseHistory</td>
<td></td>
<td>Information about releases</td>
<td>md:ReleaseHistory-type</td>
<td>0..n</td>
</tr>
<tr>
<td>Element</td>
<td>Attribute</td>
<td>Definition</td>
<td>Value</td>
<td>Card.</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>WorkType</td>
<td></td>
<td>Type of the work. See Work Type Enumeration.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>WorkTypeDetail</td>
<td></td>
<td>More specific definition of Work Type to allow a more detailed description</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>PictureColorType</td>
<td></td>
<td>Color type of asset. This SHALL not be included for audio-only assets.</td>
<td>md:ColorType-type</td>
<td>0..1</td>
</tr>
<tr>
<td>PictureFormat</td>
<td></td>
<td>A textual description of the aspect ratio format type, as defined below.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>ThreeD</td>
<td></td>
<td>Indicates whether work is in 3D. 'true' means 3D, 'false' or absent means not 3D.</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>three60</td>
<td></td>
<td>Indicates 360 video. 'true' means 360 video. False or absent means not 360.</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>multiview</td>
<td></td>
<td>Indicates multiple views are present. For example, a set of synchronized 360 videos shot from different. 'true' means multiple views exist. 'false' or absent means single view.</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>AspectRatio</td>
<td></td>
<td>Aspect ratio of active pixels, the form m:n (e.g., 4:3,16:9, 2:35:1)</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>AltIdentifier</td>
<td></td>
<td>Other identifiers for the same content.</td>
<td>md:ContentIdentifier-type</td>
<td>0..n</td>
</tr>
<tr>
<td>RatingSet</td>
<td></td>
<td>All ratings associated with this content</td>
<td>md:ContentRating-type</td>
<td>0..1</td>
</tr>
<tr>
<td>People</td>
<td></td>
<td>People involved in production, with the exception of alternate language-specific roles (e.g., voice talent for language dubbing)</td>
<td>md:BasicMetadataPeople-type</td>
<td>0..n</td>
</tr>
<tr>
<td>CountryOfOrigin</td>
<td></td>
<td>The country from where the title originates, ISO3166-1 e.g., "US" for United States. A derived would should refer to the country of the original work.</td>
<td>md:Region-type</td>
<td>0..1</td>
</tr>
<tr>
<td>Element</td>
<td>Attribute</td>
<td>Definition</td>
<td>Value</td>
<td>Card.</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
<td>---</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Primary Spoken Language</td>
<td></td>
<td>Primary spoken language of original production. As guidance this can be considered, “The language lips move to.”</td>
<td>xs:language</td>
<td>0..n</td>
</tr>
<tr>
<td>Original Language</td>
<td></td>
<td>The original language of the production.</td>
<td>xs:language</td>
<td>0..n</td>
</tr>
<tr>
<td>Version Language</td>
<td></td>
<td>The language, if any, associated with this particular version.</td>
<td>xs:language</td>
<td>0..n</td>
</tr>
<tr>
<td>Associated Org</td>
<td>role</td>
<td>Role of the associated organization.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Sequence Info</td>
<td></td>
<td>Indicates how asset fits into sequence</td>
<td>md:ContentSeq</td>
<td>Info-type</td>
</tr>
<tr>
<td>Parent</td>
<td></td>
<td>Metadata for parent items. Note that this is recursive.</td>
<td>Md:BasicMeta</td>
<td>DataParent-type</td>
</tr>
</tbody>
</table>

4.1.1.1 WorkType and WorkTypeDetail Enumerations

WorkType shall be enumerated to one of the following (categories are to support the definition, but are not included in the enumeration). WorkTypeDetail is stated where applicable.

Music related:
- ‘Album’ – A collection of songs
- ‘Song’
- ‘Music Video’ – Music Video, not ‘Performance’
- ‘Ring Tone’
- ‘Other Music’

Film related:
- ‘Movie’ – A full length movie regardless of distribution (e.g., theatrical, TV, direct to disc, etc.) and content (e.g., includes documentaries).
 - Acceptable WorkTypeDetail values include ‘theatrical’, ‘feature’, ‘for TV’, ‘documentary’ and ‘no-audio’. ‘no-audio’ may be used for very rare old films that were produced with no audio (not even music); not to be confused with ‘silent’ genre.
• ‘Short’ – a film of length shorter than would be considered a feature film.

TV, web and mobile related:

• ‘Series’ – a show that might span one or more seasons or might be a miniseries.
 o Acceptable WorkTypeDetail values include ‘miniseries’

• ‘Season’ – a season of a Series. It will contain one or more episodes.

• ‘Episode’ – an episode of a season or miniseries. A pilot is also an episode. If episode is a ‘webisode’, ‘mobisode’ or other specialized sequence, it should be noted in Keywords.

• ‘Non-episodic Show’ – TV or other show that is non-episodic; for example, sports and news.
 o Acceptable WorkTypeDetail values include ‘Sports’ and ‘News’.

• ‘Promotion’ – promotional material associated with media. This includes teasers, trailers, electronic press kits and other materials. Promotion is a special case of ‘Ad’.
 o Acceptable WorkTypeDetail values include ‘Trailer’, ‘Teaser’ and ‘EPK’.

• ‘Ad’ – any form of advertisement including TV commercials, infomercials, public service announcements and promotions not covered by ‘Promotion’. This does not include movie trailers and teasers even though they might be aired as a TV commercial.

Other:

• ‘Excerpt’ – An asset that consists primarily of portion or portions of another work or works; for example, something having the ‘isclipof’ or ‘iscompositeof’ relationship.

• ‘Supplemental’ – Material designed to supplement another work. For example, and extra associated with a Movie for a DVD.

• ‘Collection’ – A collection of assets not falling into another category. For example, a collection of movies.

• ‘Franchise’ – A collection or combination of other types, for example, a franchise might include multiple TV shows, or TV shows and movies.

Other Media:

Note: Most descriptive information applies to apps/applications, although some fields may not apply.

• ‘App’ – An App or Application. WorkTypeDetail may include
 o ‘Commerce’ – Commerce experience, typically selling something
 o ‘Game’
‘LiveFeed’ – Live data feed. This is not to be used for live video feeds.

‘Comic’ – Digital comic

‘Immersive’ – Immersive Content. WorkType Detail may include

‘AR’ – Augmented Reality

‘VR’ – Virtual Reality

‘MR’ – Mixed Reality (MR)

‘Gallery’ – An image gallery.

‘Other’ – Metadata is used in a context-specific manner.

Although there is some overlap with Genre, WorkType and WorkTypeDetail are not language or culturally specific. Although terms may overlap, the usage does not. For example, the WorkType of ‘Sport’ refers to the capture of a sporting event, where a documentary on sport would have the ‘Non-episodic Show’ WorkType. WorkType values such as ‘documentary’, ‘sports’, ‘news’, ‘for-tv’ and ‘no-audio’ can be applied to any applicable Type.

A WorkTypeDetail of ‘360’ refers to 360-degree video. It may be applied to any video WorkType. For example, a 360-degree bonus video would be encoded with WorkType of ‘Supplemental’ and WorkTypeDetail of ‘360’.

4.1.1.2 ColorType-type

md:ColorType-type enumerates the picture color types. The enumerations are as follows:

‘color’ for color. If the work contains color, but is not clearly classified into one of the other categories, is should use the ‘color’ type.

‘bandw’ for black and white

‘colorized’ for colorized video (i.e., different from the original that is typically black and white).

‘composite’ for color composite (e.g., “Sin City”).

‘unknown’ for assets based on legacy metadata where color type is not specified.

4.1.1.3 Picture Format Encoding

PictureFormat may be one of the following:

‘Letterbox’ – horizontal bars or other background appear above and/or below the picture’s active pixels.

‘Pillarbox’ – vertical bars or other background appear to the left and/or right of the picture’s active pixels.
• ‘Full’ – The active pixels fit the full area of the picture (within a few pixels). The entire original image is substantially included. This should not be confused with fullscreen, a term that may also refer to Pan and Scan.

• ‘Stretch’ – The active pixels fit the full area of the picture (within a few pixels). The entire original image is substantially included. The image has been visibly stretched in one dimension to fit (e.g., a 4:3 image stretched to 16:9 frame).

• ‘Pan and Scan’ – The active pixels fit the full area of the picture (within a few pixels). Part of the original image is not included. This includes fixed cropping, pan-and-scan and other cropping methods.

• ‘360’ – 360 linear video.

• ‘Other’ – A picture format encoding other than the above applies. For example, ‘Smilebox’.

4.1.1.4 UpdateNum

UpdateNum is an integer rather than a string (e.g., “2.3.1”) to simplify ordering. The Content Provider SHALL issue updates with increasing numbers.

4.1.1.5 OriginalLanguage, PrimarySpokenLanguage, and VersionLanguage

OriginalLanguage is the language associated with the original production of the work. OriginalLanguage usually corresponds with PrimarySpokenLanguage, although not necessarily. A silent movie with title cards would have OriginalLanguage associated with those title cards. Anime from Japan would be considered ‘jp’, even though other language audio tracks might be available. There may be multiple OriginalLanguage elements if more than one language is associated with work. For example, the movie Babel has multiple OriginalLanguage elements. The movie Hunt for Red October would have one OriginalLanguage (i.e., English), even though there is spoken Russian. Mel Brooks Silent Movie would have an OriginalLanguage of English.

PrimarySpokenLanguage is a Primary spoken language spoken in the original production. That is, the language spoken by the actors, or more specifically, the language in which their lips are moving. It should include usage for meaningful dialog, but not an occasional word. For example, the movie Babel has multiple PrimarySpokenLanguage elements. The movie Hunt for Red October, would have two: English and Russian. The movie Silent Movie, even with one word spoken, would have no PrimarySpokenLanguage elements. Silent films would not have a PrimarySpokenLanguage.

VersionLanguage refers to the particular version of the work. This should only exist if the title was edited for a particular language release.

4.1.1.6 AssociatedOrg

See Section 3.5.2.

4.1.1.7 Release Information Encoding, ReleaseHistory-type

ReleaseType may include the following values:
- ‘original’ – first worldwide, regardless of channel
- ‘Broadcast’
- ‘DVD’
- ‘Blu-ray’
- ‘Hospitality’
- ‘PayTV’ – Premium TV
- ‘InternetBuy’ – Offered for purchase on the Internet.
- ‘InternetRent’ – Offered for rent on the Internet.
- ‘Theatrical’
- ‘VOD’ – Home VOD.
- ‘SVOD’ – Subscription VOD

This list may be expanded.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReleaseHistory-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReleaseType</td>
<td></td>
<td>Release type as described above</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wide</td>
<td>Whether this release is a wide release, particularly for theatrical</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>DistrTerritory</td>
<td></td>
<td>Where it was released.</td>
<td>md:Region-type</td>
<td>0..n</td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td>When title was released. This may be a year, a date or a date and time.</td>
<td>md:YearDateOrTimeType</td>
<td></td>
</tr>
<tr>
<td></td>
<td>scheduled</td>
<td>Date is assumed to be an actual date unless scheduled is included and holds the value ‘true’</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>Description of the release.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>ReleaseOrg</td>
<td></td>
<td>Organization involved with this release.</td>
<td>md:AssociatedOrgType</td>
<td>0..n</td>
</tr>
</tbody>
</table>
4.1.2 BasicMetadataInfo-type

This contains language-specific descriptive information.

In accordance with RFC 5646, language may be inclusive of both language and character set. If submission uses more than one language or more than one character set, then multiple instances of this element may need to be supplied.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BasicMetadataInfo-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>language</td>
<td></td>
<td>Language for this set of metadata as defined in Section 3.1. language should be as specific as possible (e.g., 'ja-kata' instead of 'ja').</td>
<td>xs:language</td>
<td></td>
</tr>
<tr>
<td>default</td>
<td></td>
<td>Indicates whether this is a language to use if no other available language is meaningful within the usage context (e.g., the native language for the user). 'true' indicates yes. 'false' or absence indicates no.</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>TitleDisplay19</td>
<td></td>
<td>A brief version of the feature title (for display) that is up to a maximum length of 19 chars. This field is deprecated and we recommend UIs use TitleDisplayUnlimited.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>TitleDisplay60</td>
<td></td>
<td>A 60-character-or-less version of the title for display in UIs that can’t accommodate titles longer than 60 characters. We recommend UIs use TitleDisplayUnlimited.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>TitleDisplayUnlimited</td>
<td></td>
<td>A display title with no length limit. It is recommended this be limited to no more than 256 characters.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>TitleSort</td>
<td></td>
<td>A sortable version of the feature title, e.g., "Incredibles, The" separated by commas.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>ArtReference</td>
<td></td>
<td>Reference to art image</td>
<td>xs:anyURI</td>
<td>0..n</td>
</tr>
<tr>
<td>resolution</td>
<td></td>
<td>String in the form colxrow (e.g., 800x600 would mean an image 800 pixels wide and 600 pixels tall).</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>purpose</td>
<td></td>
<td>Purpose of image. No controlled vocabulary defined in this spec.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Summary190</td>
<td></td>
<td>The title description – sentence. (max 190 char)</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Type</td>
<td>Max Value</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>cast</td>
<td>Flag to indicate if cast is or is not included in summary description. Missing assumes ‘false’.</td>
<td>xs:boolean</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>Summary400</td>
<td>The title description -one paragraph, could be used as description in EPG. (max 400 char)</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>cast</td>
<td>Flag to indicate if cast is or is not included in summary description. Missing assumes ‘false’.</td>
<td>xs:boolean</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>Summary4000</td>
<td>The title description – multi-paragraph. (max 4000 char)</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>cast</td>
<td>Flag to indicate if cast is or is not included in summary description. Missing assumes ‘false’.</td>
<td>xs:boolean</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>Display Indicators</td>
<td>Indicators that MAY affect UI display. See Display Indicator Encoding below.</td>
<td>xs:string</td>
<td>0..n</td>
<td></td>
</tr>
<tr>
<td>Genre</td>
<td>Subject-matter classification of the show. See Genre Encoding below.</td>
<td>xs:string</td>
<td>0..n</td>
<td></td>
</tr>
<tr>
<td>source</td>
<td>Naming system from which genre is derived.</td>
<td>xs:anyURI</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>Identifier for genre used within source</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>level</td>
<td>Indicates precedence of genre, with a lower number being high precedence.</td>
<td>xs:integer</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>Keyword</td>
<td>Keyword</td>
<td>xs:string</td>
<td>0..n</td>
<td></td>
</tr>
<tr>
<td>VersionNotes</td>
<td>A descriptive statement about the reason why this cut was created or what its content represents with reference to other versions of this work. Do not include information about the language of the title in this field. If the cut is for a censor in a particular linguistic region, the region associated with the censor or censor name should be used, i.e., German censor version. VersionNotes may include edits for content, such as "Airplane Version".</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>The ISO 3166-1 code used to represent the name of the region(s) where the work is intended to be broadcast or shown. The code should be interpreted in a case insensitive manner. Note: Do not use the code "ww" to represent a worldwide region.</td>
<td>md:Region-type</td>
<td>0..n</td>
<td></td>
</tr>
<tr>
<td>OriginalTitle</td>
<td>Original title (no size limits).</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>CopyrightLine</td>
<td>Displayable copyright line.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
</tbody>
</table>
PeopleLocal: People involved in the localized production, typically local voice actors.

TitleAlternate: Alternate titles

type: Type of alternate title

language: The language of TitleAlternate if different from language attribute for BasicMetadataInfo-type.

4.1.2.1 Display Indicator Encoding

The values used for Display Indicator are at the discretion of the Publisher and the Retailer. Examples of values conceived for this element include, “CC”, “DVS”, “P” (season premiere) and “F” (finale).

4.1.2.2 Genre Encoding

Genre is culturally and contextually specific, so different genre classifications may exist for different regions. This section presents a few alternatives for genre enumeration. Others will apply. Any genre list may be used.

The source attribute should be used for defined genre sets. It should be a URL that uniquely and unambiguously identifies a genre classification system. Ad hoc genre naming systems should use a URI whose namespace is under the control of the author.

The ‘id’ attribute may be used when a genre has an ID associated with the text string. In this case, the text string goes in the element, and the ID goes in the attribute. For example, using the EBU metadata, when the genre is “Surfing” the ID is “3.2.6.10”.

The level attribute indicates which genres are primary genre, main genre, subgenre, etc. A lower number indicates a higher precedence. Primary should be encoded as ‘0’. Only one instance of a primary should be included for a source.

Alternatively, the following genres apply:

<table>
<thead>
<tr>
<th>Region (Language)</th>
<th>Source</th>
<th>'source' attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States, Canada (English)</td>
<td>Library of Congress, Motion Picture and Television Reading Room</td>
<td>http://www.loc.gov/rr/mopic/miggen.html</td>
</tr>
</tbody>
</table>
4.1.2.3 TitleAlternate/type Encoding

The following types should be used for the type attribute describing an AlternateTitle element:

- ‘alternative’ – legitimate alternative titles used to refer to the work. Shortened titles and common variations are included in this category. Most alternate titles are in this category.
- ‘misspelling’ – the title with a common misspelling. This should be included rarely, and a comprehensive list of possible misspellings should not be included.
- ‘StartsWith’ – search-centric title using convention typically used in Japan

Alternate titles may include a language attribute to indicate a language different from the language attribute in the parent element. For example, if the LocalizedInfo is in Hiragana and there is a Katakana TitleAlternate with a type of “startsWith”, the language should be ‘ja-kata’.

4.1.3 ContentIdentifier-type

This is designed to provide a cross reference to all other identifiers associated with this content. ContentIdentifier-type is a simple type based on md:id-type.

Namespace will be any namespace as listed in Table 2-1.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentIdentifier-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Namespace</td>
<td></td>
<td>Namespace of identifier from Content ID table in the Identifiers section.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td></td>
<td>Value of identifier.</td>
<td>xs:string</td>
<td></td>
</tr>
</tbody>
</table>
4.1.4 BasicMetadataPeople-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BasicMetadataPeople-type</td>
<td></td>
<td></td>
<td>xs:anyURI</td>
<td>0..1</td>
</tr>
<tr>
<td>Job</td>
<td></td>
<td>Description of job function and, if applicable, character(s)</td>
<td>md:BasicMetadataJob-type</td>
<td>1..n</td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>Person or entity’s name</td>
<td>md:PersonName-type</td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td></td>
<td>Formal identifier for this individual.</td>
<td>md:PersonIdentifier-type</td>
<td>0..n</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td>Female, Male, Neutral, plural (name for group)</td>
<td>xs:string: “male”, “female”, “neutral” “plural”</td>
<td>0..1</td>
</tr>
</tbody>
</table>

4.1.4.1 BasicMetadataJob-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BasicMetadataJob-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JobFunction</td>
<td></td>
<td>Role in production of media. Role is encoded in accordance with “Role Encoding” above. This version is displayable, but JobDisplay is preferred if present.</td>
<td>md:Role-type</td>
<td></td>
</tr>
<tr>
<td>scheme</td>
<td></td>
<td>The Role Scheme if alternate role systems are used.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>JobDisplay</td>
<td></td>
<td>Displayable version of Role. This allows metadata encoder to be more specific. For example, while JobFunction allows encoding of “Assistant Cameraman”, JobDisplay could be “1st Assistant Cameraman”.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td>Language of JobDisplay. There may be multiple instances of JobDisplay, but only with unique language attributes.</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>BillingBlockOrder</td>
<td></td>
<td>Order of listing, starting with 1. If missing, implies infinity and may be listed in any order. This need not be contiguous.</td>
<td>xs:int, [1..maxint]</td>
<td>0..1</td>
</tr>
</tbody>
</table>
4.1.4.2 BasicMetadataParent-type

This allows parent metadata to be included either by inclusion or reference. Usage rules will define if and when ParentContentID may be used in lieu of Parent. This is an optimization to avoid repeating full metadata sets when multiple objects have the same parent.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BasicMetadataParent-type</td>
<td>relationshipType</td>
<td>The relationship between this asset and its parent as defined below.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Parent</td>
<td></td>
<td>The parent metadata object.</td>
<td>md:BasicMetadata-type</td>
<td>(choice)</td>
</tr>
<tr>
<td>ParentContentID</td>
<td></td>
<td>Same as Parent, although included by reference instead of inclusion.</td>
<td>md:ContentID-type</td>
<td>(choice)</td>
</tr>
</tbody>
</table>

The relationshipType attribute may have the following enumerations:

- ‘isclipof’ – The asset is a subset of the larger body that is a contiguous subset of the parent. It may include unique small amounts of pre- and post-material such as new titles and credits. A typical example is a clip extracted from a larger video.
- ‘isepisodeof’ – The asset is an instance of an ordered sequence (i.e., an episode)
- “isseasonof” – The asset is a season and the parent is a show
- ‘ispartof’ – The asset is one complete segment of a larger body not covered by other definitions here. This may include a movie that is part of a series of movies. A song will be part of an album.
- ‘isderivedfrom’—The asset is a modification of the parent work. Some examples include a colorized version derived from a B&W version, and an edit such as a “Director’s Cut” or “Unrated Edition”.
- ‘iscompositeof’ – Asset includes a subset of the parent, such as may be found in a mashup. This contrasts a clip which is a proper subset otherwise unmodified.
- ‘issupplementto’ – is supplemental material. For example, outtakes and makings-of would be supplements.
• ‘ispromotionfor’ – is promotional material, such as a trailer. This is used when the child object has a work type of ‘Promotion’ and it is a promotion for the parent object.

Note that the parent object supplements information in the work—there is no structural or implied inheritance. When parents exist, they should be included either directly or by reference in each BasicMetadata-type element instance.

4.1.4.3 ContentSequenceInfo-type

Describes Sequence, if part of sequence (episode, season, movie series, etc.). The actual sequence type is defined by the WorkType element.

Either Number or HouseSequence must be included. An element with HouseSequence but no number indicates the asset is non-sequenced and the HouseSequence is included for reference. This might be the case for a documentary whose airing sequence is irrelevant but the HouseSequence is still usable for management of the asset.

If neither Number nor HouseSequence is included, the ContentSequenceInfo-type based element should not be included.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentSequenceInfo-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td>Where it fits in sequence (e.g., episode 1 is “1”). Start with 1. If it is the only one in the sequence, it is numbered 1. Generally, sorting is done by Number. This is a strict ordering that may not necessarily correspond with the actual release number. For example, if a show issues with episodes represented in DistributionNumber as ‘1’, ‘2’, ‘3a’, ‘3b’ and 4, the corresponding Number will be ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’.</td>
<td>xs:int</td>
<td></td>
</tr>
<tr>
<td>DistributionNumber</td>
<td></td>
<td>A flexible, but mainly numeric, representation of the sequence of release within a set or season as used in distribution. Note that ContentNumber-type allows non-numeric values such as ‘3a’ and ‘1.2’.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>domain</td>
<td></td>
<td>The namespace domain for the element</td>
<td></td>
<td>0..1</td>
</tr>
</tbody>
</table>
4.2 Compilation Object

A Compilation Object is a grouping outside of the structure of Basic Metadata (i.e., Parent definitions). Compilation Objects may include metadata, either by inclusion or reference. The md:CompObj-type is designed as a simple list of entries. It is intended for inclusion within other structures. The md:CompObjData-type is a more standalone structure that has an ID and a DisplayName field at the top level, and then the entries. Lists of entries are ordered. For example, if the entries are season premieres of a given show, they can be ordered in season order; and that ordering should be preserved.

4.2.1 CompObj-type

The following defines a compilation.

Generally, a compilation will contain Entry elements defining the content of the compilation. Use of CompilationClass is optional.

In some circumstances such as Avails and in identifier metadata, knowledge of the entries might not be known or needed. In this case, it is acceptable to include CompilationClass with no

<table>
<thead>
<tr>
<th>HouseSequence</th>
<th>Identifier used internally for the asset. This might not be ordered the same as Number and is general in format allowing the inclusion of season or other information, e.g. 'S03E15' or 'GT0315'. This is sometimes called Production ID.</th>
<th>xs:string</th>
<th>0..1</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>The namespace domain for the element</td>
<td></td>
<td>0..1</td>
</tr>
<tr>
<td>AlternateNumber</td>
<td>Another identifier by which this item is known, e.g. a number used by a distributor, such as a network, that does not fall into the above definitions. It also is general in format and may include season or other information.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>domain</td>
<td>The namespace domain for the element</td>
<td></td>
<td>0..1</td>
</tr>
</tbody>
</table>
Entry elements. Note that if Entry is absent, CompilationClass is required, and if CompilationClass is empty, Entry is required.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp_Obj-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry</td>
<td></td>
<td>An individual entry in the compound object. The list is ordered.</td>
<td>md:Comp_ObjEntry-type</td>
<td>0..n</td>
</tr>
<tr>
<td>CompilationClass</td>
<td></td>
<td>A description of the compilation</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>hasOtherInclusions</td>
<td></td>
<td>Indicates whether Entry elements include entries beyond the scope of the CompilationClass. Only applies if ‘true’.</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
</tbody>
</table>

4.2.2 Comp_ObjID-type

This is a simple type of type md:id-type that can be used to assign a unique identifier.

4.2.3 Comp_ObjData-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp_ObjData-type</td>
<td></td>
<td></td>
<td>md:Comp_Obj-type</td>
<td>(extension)</td>
</tr>
<tr>
<td>Comp_ObjID</td>
<td></td>
<td>Identifier for this compound object</td>
<td>md:Comp_ObjID-type</td>
<td>0..1</td>
</tr>
<tr>
<td>DisplayName</td>
<td></td>
<td>A description of the Compound Object. There may be one entry per language.</td>
<td></td>
<td>0..n</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td>Language of the DisplayName in accordance with encoding described in Section 3.1.</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
</tbody>
</table>
4.2.4 Comp-ObjEntry-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompObjEntry-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DisplayName</td>
<td></td>
<td>A description of the Compilation Object. There may be one entry per language.</td>
<td></td>
<td>0..n</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td>Language of the DisplayName in accordance with encoding described in Section 3.1.</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>EntryNumber</td>
<td></td>
<td>Represents the sequence of this entry relative to other entries. When specified, EntryNumber reflects order. This shall be numeric unless the system using this element specifically allows other formats (e.g., EIDR allows forms such as ‘1a’).</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>EntryClass</td>
<td></td>
<td>Describes the relationship of this Entry to the elements of the compilation.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Entry</td>
<td></td>
<td>An individual entry in the compound object. The list is ordered.</td>
<td>md:CompObjEntry-type</td>
<td>0..n</td>
</tr>
<tr>
<td>ContentID</td>
<td></td>
<td>Content ID for item in the Compilation Object. It is assumed the metadata associated with this ContentID is available, and this field is used as an optimization to avoid repeating metadata.</td>
<td>md:ContentID-type</td>
<td>(choice)</td>
</tr>
<tr>
<td>BasicMetadata</td>
<td></td>
<td>Basic Metadata for the entry.</td>
<td>md:BasicMetadata-type</td>
<td>(choice)</td>
</tr>
<tr>
<td>(any)</td>
<td></td>
<td>Provisions for external references or other metadata (reserved).</td>
<td>(any##other)</td>
<td>(choice)</td>
</tr>
</tbody>
</table>

Metadata is included either by inclusion (use of BasicMetadata element) or by reference (use of ContentID element). Use of ContentID is an optimization for situations where the metadata for that ContentID is already provided. External systems, such as EIDR, can have external references. Therefore, additional elements can be used in lieu of ContentID or BasicMetadata. Within Common Metadata usage, only ContentID and BasicMetadata is used.
4.2.4.1 **EntryClass Encoding**

EntryClass defines how an element relates to the compilation. If the entity does not fit one of the following, this element should be omitted. Vocabulary is:

- ‘Episode’ – the item is an episode, or treated as an episode in the context of this compilation
- ‘Installment’ – the item is part of a sequential but non-episodic set of items
- ‘Part’ – the item is a piece of a large work, e.g. Part 1 and Part 2 of a film
- ‘Season’ – the item is a season of a series, or treated as a season in the context of this compilation
5 DIGITAL ASSET METADATA

Digital Asset Metadata describes includes relating to the Physical Asset that is distinct from the Logical Asset.

5.1 Digital Asset Metadata Description

A Digital Asset has certain properties that are not general to the Logical Asset and are therefore distinct from Basic Metadata. Digital Asset Metadata describes these properties. These data are distinct from Basic Metadata. The set of Digital Asset Metadata does not attempt to include all possible data about the Asset, only a subset of those most useful.

Metadata includes:
- Audio/video Encoding information
- Resolution, codec, frame rate, max bitrate

5.2 Definitions

5.2.1 DigitalAssetMetadata-type and DigitalAssetSet-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetMetadata-</td>
<td></td>
<td>Metadata for an audio asset</td>
<td>md:DigitalAssetAudioData-type</td>
<td>choice</td>
</tr>
<tr>
<td>type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td></td>
<td>Metadata for a video asset</td>
<td>md:DigitalAssetVideoData-type</td>
<td>choice</td>
</tr>
<tr>
<td>Video</td>
<td></td>
<td>Metadata for subtitles</td>
<td>md:DigitalAssetSubtitleData-type</td>
<td>choice</td>
</tr>
<tr>
<td>Subtitle</td>
<td></td>
<td>Metadata for Images</td>
<td>md:DigitalAssetImageData-type</td>
<td>choice</td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td>Metadata for Interactive</td>
<td>md:DigitalAssetInteractiveData-type</td>
<td>choice</td>
</tr>
<tr>
<td>Interactive</td>
<td></td>
<td>Metadata for Ancillary</td>
<td>md:DigitalAssetAncillaryDate-type</td>
<td>choice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetSet-type</td>
<td></td>
<td>Metadata for an audio asset</td>
<td>md:DigitalAssetAudioData-type</td>
<td>0..n</td>
</tr>
</tbody>
</table>
5.2.2 DigitalAssetAudioData-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetAudioData-type</td>
<td></td>
<td>Description of the track. Description should be in the language given by the “Language” element below.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>Description</td>
<td>language</td>
<td>Language of Description (for localization)</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>The type of track. See Audio Track Encoding. If not present, track is assumed to be ‘primary’.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>SubType</td>
<td></td>
<td>The subtype of audio track.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Language for the audio track as defined in Section 3.1.</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>dubbed</td>
<td></td>
<td>If present and true, indicates Language is dubbed audio.</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>forced</td>
<td></td>
<td>If present and true, indicates dubbing includes forced narratives (in lieu of forced subtitles). Only applies when @dubbed='true'</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>People</td>
<td></td>
<td>People included in track. Generally, only used when Type='commentary'</td>
<td>md:BasicMetadataPeople-type</td>
<td>0..n</td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td>Audio encoding information. If CODEC is not known, this should not be included.</td>
<td>md:DigitalAssetAudioEncoding-type</td>
<td>0..1</td>
</tr>
</tbody>
</table>
Channels
Number of audio channels, either as an integer (e.g., 2) or of the form x.y where x is full channels, and y is limited channels (e.g. “5.1”) xs:string 0..1

<table>
<thead>
<tr>
<th>TrackReference</th>
<th>Track cross-reference to be used in conjunction with container-specific metadata.</th>
<th>xs:string</th>
<th>0..1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TrackIdentifier</td>
<td>Identifiers, such as EIDR, for this track. Multiple identifiers may be included.</td>
<td>md:ContentIdentifier-type</td>
<td>0..n</td>
</tr>
<tr>
<td>Private</td>
<td>Extensibility mechanism to accommodate data that is private to given usage.</td>
<td>md:PrivateData-type</td>
<td>0..1</td>
</tr>
</tbody>
</table>

5.2.2.1 Type Encoding
If Type is present, it should have one of the following values:

- ‘primary’ – primary audio track. There may be multiple primary tracks, with one for each language.
- ‘narration’ - The visually impairment associated service is a complete program mix containing music, effects, dialogue, and additionally a narrative description of the picture content. The narration service may be coded using multiple channels. A Descriptive Video Service® (DVS®) track is a narration track.
- ‘dialogcentric’ - The hearing impaired associated service is a complete program mix containing music, effects, and dialogue with dynamic range compression. The dialog-centric service may be coded using multiple channels.
- ‘commentary’ – Commentary on the video. May be paired with a PIP.
- ‘silent-omitted’ – Indicates there is no audio associated with the video (i.e., a silent film with no associated music). This is a means of signaling that no audio tracks will be delivered.
- ‘other’ – not one of the above

5.2.2.2 SubType Encoding
If SubType is present it may have one of the following values

- ‘MandE’ – Music and Effects audio (i.e., no dialog)
- ‘Music’ – Music track
- ‘Effects’ – Effects track
- ‘Dialog-only’ – Dialog track
- SubTypes for Type of ‘commentary’
5.2.3 DigitalAssetAudioEncoding-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetAudioEncoding-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codec</td>
<td></td>
<td>Name of supported codec. See Codec encoding below.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>CodecType</td>
<td></td>
<td>Formal reference identification of CODEC. See below</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>BitrateMax</td>
<td></td>
<td>Peak Bitrate (bits/second) averaged over a short period.</td>
<td>xs:integer</td>
<td>0..1</td>
</tr>
<tr>
<td>BitrateAverage</td>
<td></td>
<td>Bitrate averaged over the entire track.</td>
<td>xs:integer</td>
<td>0..1</td>
</tr>
<tr>
<td>VBR</td>
<td></td>
<td>Variable BitRate information.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>SampleRate</td>
<td></td>
<td>Sample Rate (samples/second)</td>
<td>xs:integer</td>
<td>0..1</td>
</tr>
<tr>
<td>SampleBitDepth</td>
<td></td>
<td>Number of bits per audio sample</td>
<td>xs:integer</td>
<td>0..1</td>
</tr>
<tr>
<td>ChannelMapping</td>
<td></td>
<td>Indication of how channels are mapped to intended speaker locations.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Watermark</td>
<td></td>
<td>Information about watermark(s) embedded in audio.</td>
<td>md:DigitalAssetWatermark-type</td>
<td>0..n</td>
</tr>
<tr>
<td>ActualLength</td>
<td></td>
<td>The actual encoded length of the track.</td>
<td>xs:duration</td>
<td>0..n</td>
</tr>
</tbody>
</table>

5.2.3.1 Audio CODEC Encoding

The following values should be used for elementary stream CODECs listed. “Other” should be used if the CODEC is not on the list. This list may be expanded over time.

- ‘AAC’ – Advanced audio CODEC
• ‘AAC-LC’
• ‘AAC-LC+MPS’
• ‘AAC-SLS’
• ‘AC-3’ – Dolby Digital, AC-3
• ‘AC-4’ – Dolby AC-4
• ‘AIFF’ – Audio Interchange File Format (when specific CODEC is not known)
• ‘ALAC’ – Apple Lossless Audio Codec
• ‘AMR’ – Adaptive MultiRate
• ‘DOLBY-TRUEHD’
• ‘DSD’ – Direct Stream Digital
• ‘DST’ – Direct Stream Transfer
• ‘DTS’ – DTS CODEC
• ‘DTS-ES’ – DTS ES (Extended Surround)
• ‘DTS-EXPRESS’ – DTS Express Audio
• ‘DTS-HRA’ – DTS-HD High Resolution Audio
• ‘DTS-96/24’ – DTS 96/24
• ‘DTS-MA’ – DTS-HD Master Audio
• ‘DTS-X’ – DTS:X Audio
• ‘E-AC-3’ – Enhanced AC3, Dolby Digital Plus (DD+)
• ‘FLAC’ – Free Lossless Audio Codec
• ‘HE-AACv2’ – High Efficiency AAC v2
• ‘LPAC’ – Lossless Predictive Audio Compression
• ‘LTAC’ – Lossless Transform Audio Compression
• ‘MP3’ – MPEG 1 Layer 3
• ‘MPEG1’ – MPEG1 Layer 2
• ‘MPEG-4-ALS’
• ‘MPEG-H’ – MPEG-H Part 3: 3D Audio
• ‘MLP’ – Meridian Lossless Package
• ‘PCM’ – Pulse Code Modulation, or Linear PCM
• ‘QCELP’ – Qualcomm Code Excited Linear Prediction
• ‘RealAudio-Lossless’ – Real Networks’ lossless format
• ‘Vorbis’ – Ogg Vorbis
• ‘WAV’ – used when specific CODEC (e.g., PCM) is unknown or not listed
• ‘WMA’ – Windows Media Audio
• ‘WM9-lossless’
5.2.3.2 CodecType Encoding

CodecType allows a more formal encoding of CODEC type based on formal registries. CodecType takes the form

<namespace> + ':' + <codec type>

<namespace> is accordance with the following table:

<table>
<thead>
<tr>
<th>Namespace</th>
<th>Definition</th>
<th>Reference for <codec type></th>
</tr>
</thead>
<tbody>
<tr>
<td>mpeg4ra</td>
<td>MPEG 4 Registration Authority</td>
<td>http://www.mp4ra.org/codecs.html</td>
</tr>
<tr>
<td>IANA</td>
<td>Internet Assigned Numbers Authority (IANA) Audio Media Types</td>
<td>http://www.iana.org/assignments/media-types/audio/</td>
</tr>
<tr>
<td>rfc4281</td>
<td>CODEC encoded in according with RFC4281</td>
<td>http://www.ietf.org/rfc/rfc4281.txt</td>
</tr>
</tbody>
</table>

Only one entry per namespace is allowable.

5.2.3.3 VBR Encoding

The following values should be used for VBR:

- ‘VBR’ – Quality-based, 1-pass VBR
- ‘Constrained VBR’ – Constrained VBR, with maximum bitrate reflected in BitrateMax.
- ‘2-pass VBR’ – 2-pass, unconstrained VBR

5.2.3.4 ChannelMapping Encoding

The following values should be used for ChannelMapping when describing a single track. Their meaning is defined in [SMPTE-428-3]:

Also applicable are applicable when ChannelMapping describes multiple tracks:

- ‘stereo’ – Left and Right
- ‘5.1 Matrix’ – 5.1 channels matrixed in two channels
- ‘surround’ – Greater than two channels, without a specific channel assignment
- ‘L,R,C,LFE,LS,RS’
- ‘L,R,C,LFE,LS,RS,LRS,RRS’
‘L,C,R,LS,RS,LFE’
‘L,R,C,LFE,LS,RS,LC,RC’
‘ACN’ – Ambisonics Channel Number (convention). For First-Order Ambisonics, this is W, Y, Z, X for channels 0, 1, 2 and 3 respectively. http://ambisonics.ch/standards/channels/
‘W,Y,Z,X’ – First order Ambisonics
‘Quad-binaural’ – 4 channels of binaural audio as follows: 0 degrees Left, Right; 90 degrees Left, Right; 180 degrees Left, Right; 270 degrees Left, Right.

5.2.3.5 DigitalAssetAudioAmbisonics-type
Describes Ambisonics parameters. See ChannelMapping for channel mapping information.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetAudioAmbisonics-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Ambisonic Type. If absent, ‘Periphonic’ is assumed.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Order</td>
<td></td>
<td>Highest Order of Ambisonics. If VerticalOrder is not included, this is the order of 3D Ambisonics. First order Ambisonics have the value 1, with no VerticalOrder present. If VerticalOrder is present, this is the Horizontal Order.</td>
<td>xs:positiveInteger</td>
<td></td>
</tr>
<tr>
<td>VerticalOrder</td>
<td></td>
<td>Used to specify Pantophonic (two-dimensional) or mixed-order Ambisonics. If present, this represents the Vertical order (V) and must be less than H. If 0, result is two-dimension.</td>
<td>xs:integer</td>
<td>0..1</td>
</tr>
<tr>
<td>Normalization</td>
<td></td>
<td>Ambisonics Normalization</td>
<td>xs:string</td>
<td></td>
</tr>
</tbody>
</table>

Type is encoded as follows:
• ‘Periphonic’ – 3D
• ‘Pantophonic’ – 2D
• ‘Mixed-order’ – Mixed order
Normalization is encoded as follows:
- ‘SN3D’ – Schmidt semi-normalization
- ‘SN2D’ – SN2D normalization (horizontal only)
- ‘maxN’ – maxN normalization
- ‘N3D’ – Full 3D normalization
- ‘N2D’ – N2D normalization (horizontal only)

5.2.4 DigitalAssetVideoData-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetVideoData</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>language</td>
<td>Description of this video track</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language of Description (for localization)</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Type of video track. If Type is missing, ‘primary’ is assumed. See Video Track Type encoding below.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td>Details on Video Encoding. If CODEC is unknown, this element should not be included.</td>
<td>md:DigitalAssetVideoEncoding-type</td>
<td>0..1</td>
</tr>
<tr>
<td>Picture</td>
<td></td>
<td>Picture description. Should generally be included except for ancillary tracks.</td>
<td>md:DigitalAssetVideoPicture-type</td>
<td>0..1</td>
</tr>
<tr>
<td>ColorType</td>
<td></td>
<td>Color type of video. Note that Color Type is also included in BasicMetadata, however, this provides information down to the individual stream.</td>
<td>md:ColorType-type</td>
<td>0..1</td>
</tr>
<tr>
<td>PictureFormat</td>
<td></td>
<td>PictureFormat of video. If absent, assumed to be same as in BasicMetadata. Note that PictureFormat is also included in BasicMetadata, however, this provides information down to the individual stream.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>CaptureMethod</td>
<td></td>
<td>Means used to create image. More than one can apply.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Language of text visible in the video. The primary use is to distinguish this track from other tracks with different localized text.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>SubtitleLanguage</td>
<td>Indicates the presence of subtitles embedded in the video stream, either closed (e.g., EIA-608B) or rendered into the video. This is distinguished from subtitles handled via separate tracks. Subtitles in separate tracks should be included in DigitalAssetMetadata-type's Subtitle element. Language encoding is defined in Section 3.1. Silent movies with text displays are considered 'normal' subtitles.</td>
<td>xs:language</td>
<td>0..n</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>closed</td>
<td>Indicates whether captions are closed.</td>
<td>xs:boolean</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>Indicates type of subtitle. See Section 5.2.7.1.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>SignedLanguage</td>
<td>Indicates the presence of signed language in the video. Language must be a sign language such as ‘ase’ for American Sign Language or ‘fsl’ for French Sign Language.</td>
<td>xs:language</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>CardsetList</td>
<td>Cardsets, such as distribution logos and anti-piracy notices, embedded in video.</td>
<td>md:DigitalAssetCards etList-type</td>
<td>0..n</td>
<td></td>
</tr>
<tr>
<td>TrackReference</td>
<td>Track cross-reference to be used in conjunction with container-specific metadata.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>TrackIdentifier</td>
<td>Identifiers, such as EIDR, for this track. Multiple identifiers may be included.</td>
<td>md:ContentIdentifier-type</td>
<td>0..n</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>Extensibility mechanism to accommodate data that is private to given usage.</td>
<td>md:PrivateData-type</td>
<td>0..1</td>
<td></td>
</tr>
</tbody>
</table>

CaptureMethod is encoded as follows:
- ‘LiveAction’ – Live actors are captured in the image
- ‘MotionCapture’ – Real-world subjects (e.g., people, animals, scenery and objects) are captured and then rendered in some form into the picture
- ‘Rotoscope’ – Live action is artistically rendered into an image. Derived from the technique of rotoscoping.
- ‘StopAction’ – Objects such as models or paper are captured and manually moved between frames
- ‘Rendered’ – 3D computer rendering of frames.
- ‘Animation’ – 2D drawing of frames. Covers both human and computer generated images.
Note that the presence of visual effects (VFX) does not generally define the category. For example, *Life of Pi* is “LiveAction” despite considerable VFX.

5.2.4.1 Video Type Encoding

Type, if present, should have one of the following values:

- ‘primary’ – primary video track. Whether or not this has burned-in subtitles (i.e., subtitle text in the picture) is determined by the presence of the `SubtitleLanguage` element
- ‘overlay’ – PIP or other overlay track, intended for use with a ‘primary’ track
- ‘angle’ – alternate angle track
- ‘enhancement’ – Track is an enhancement layer for another track, such as for scalability
- ‘other’ - not one of the above

5.2.5 DigitalAssetVideoEncoding-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codec</td>
<td></td>
<td>CODEC used. See Video CODEC Encoding below.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>CodecType</td>
<td></td>
<td>Formal reference identification of CODEC. See below</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>MPEGProfile</td>
<td></td>
<td>MPEG Profile</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>MPEGLevel</td>
<td></td>
<td>MPEG Level (e.g., “3”, “4”, “1.3”)</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>BitrateMax</td>
<td></td>
<td>Bitrate (bits/second)</td>
<td>xs:integer</td>
<td>0..1</td>
</tr>
<tr>
<td>BitRateAverage</td>
<td></td>
<td>Bitrate averaged over the entire track.</td>
<td>xs:integer</td>
<td>0..1</td>
</tr>
<tr>
<td>VBR</td>
<td></td>
<td>Variable BitRate information. See Section 5.2.3.3 for encoding values.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Watermark</td>
<td></td>
<td>Information about watermark(s) embedded in video.</td>
<td>md:DigitalAssetWatermark-type</td>
<td>0..n</td>
</tr>
<tr>
<td>ActualLength</td>
<td></td>
<td>The actual encoded length of the track.</td>
<td>xs:duration</td>
<td>0..1</td>
</tr>
</tbody>
</table>

Motion Picture Laboratories, Inc.
5.2.5.1 Video CODEC Encoding

The following values should be used for elementary stream CODECs listed. ‘Other’ should be used if the CODEC is not on the list. This list may be expanded over time.

- ‘AVI Uncompressed’
- ‘CineForm HD’
- ‘DIVX’
- ‘DV’ – DV, including variants such as DVCPRO, DVCAM, etc.
- ‘H.264’ – H.264, MPEG-4 Part 10
- ‘H.265’ – HEVC/H.265
- ‘MOBICLIP’ – Actimagine’s Mobiclip CODEC
- ‘MPEG1’ – MPEG 1 Part 2
- ‘MPEG2’ – MPEG 2 Part 2
- ‘On2’ – On2 CODEC when not VP6, VP7 or VP8, or exact CODED is unknown.
- ‘PHOTOJPEG’
- ‘PRORES’ – Apple ProRes
- ‘PRORESHQ’ – Apple ProRes HQ
- ‘PRORES422’ – Apple ProRes 422
- ‘QT Uncompressed’ – Apple QuickTime Uncompressed
- ‘REAL’ – RealNetworks’ RealVideo
- ‘Spark’ – Sorenson Spark
- ‘SVQ’ – Sorenson Video Quantizer
- ‘WMV’ – Windows Media Video when not WMV7, WVM8 or WMV9 or exact CODEC is unknown
- ‘WMV7’ – Windows Media Video 7
- ‘WMV8’ – Windows Media Video 8
- ‘WMV9’ – Windows Media Video 9
- ‘VC1’ – Microsoft VC-1
- ‘VP6’ – On2 VP6
• ‘VP7’ – On2 VP7
• ‘VP8’ – On2 VP8
• ‘VP9’ – Google VP9
• ‘XVID’ – Xvid
• ‘OTHER’ – not one of the above.

5.2.5.2 CodecType Encoding

CodecType allows a more formal encoding of CODEC type based on formal registries. CodecType takes the form

<namespace> + ‘:’ + <codec type>

<namespace> is accordance with the following table:

<table>
<thead>
<tr>
<th>Namespace</th>
<th>Definition</th>
<th>Reference for <codec type></th>
</tr>
</thead>
<tbody>
<tr>
<td>mpeg4ra</td>
<td>MPEG 4 Registration Authority</td>
<td>http://www.mp4ra.org/codecs.html</td>
</tr>
<tr>
<td>IANA</td>
<td>Internet Assigned Numbers Authority (IANA) Audio Media Types</td>
<td>http://www.iana.org/assignments/media-types/audio/</td>
</tr>
</tbody>
</table>

Only one entry per namespace is allowable.

5.2.5.3 Video MPEG Profile and Level Encoding

MPEG Profile and Level encoding depends on the CODEC used (that is, Codec and CodecType).

The following values should be used for MPEGProfile and MPEGLevel:
<table>
<thead>
<tr>
<th>Codec</th>
<th>MPEGProfile</th>
<th>MPEGLevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.264 (preferred)</td>
<td>as defined in [ISO14496-10]</td>
<td>as defined in [ISO14496-10]</td>
</tr>
<tr>
<td></td>
<td>• 'BP' – Baseline Profile</td>
<td>• 1</td>
</tr>
<tr>
<td></td>
<td>• 'CBP' – Constrained Baseline Profile</td>
<td>• 1b</td>
</tr>
<tr>
<td></td>
<td>• 'MP' – Main Profile</td>
<td>• 1.1</td>
</tr>
<tr>
<td></td>
<td>• 'XP' – Extended Profile</td>
<td>• 1.2</td>
</tr>
<tr>
<td></td>
<td>• 'HiP' – High Profile</td>
<td>• 1.3</td>
</tr>
<tr>
<td></td>
<td>• 'CHiP' – Constrained High Profile (not in [ISO14496-10])</td>
<td>• 2</td>
</tr>
<tr>
<td></td>
<td>• 'PHiP' – Progressive High Profile</td>
<td>• 2.1</td>
</tr>
<tr>
<td></td>
<td>• 'Hi10P' – High 10 Profile</td>
<td>• 2.2</td>
</tr>
<tr>
<td></td>
<td>• 'Hi422P' – High 4:2:2 Profile</td>
<td>• 3</td>
</tr>
<tr>
<td></td>
<td>• 'Hi444P' – High 4:4:4 Profile</td>
<td>• 3.1</td>
</tr>
<tr>
<td></td>
<td>• 'Hi444PP' – High 4:4:4 Predictive Profile</td>
<td>• 3.2</td>
</tr>
<tr>
<td></td>
<td>• 'Hi101P' – High 10 Intra Profile</td>
<td>• 4</td>
</tr>
<tr>
<td></td>
<td>• 'Hi4221P' – High 4:2:2 Intra Profile</td>
<td>• 4.1</td>
</tr>
<tr>
<td></td>
<td>• 'Hi4441P' – High 4:4:4 Intra Profile</td>
<td>• 4.2</td>
</tr>
<tr>
<td></td>
<td>• 'C4441P' – CAVLC 4:4:4 Intra Profile</td>
<td>• 5</td>
</tr>
<tr>
<td></td>
<td>• 'SBP' – Scalable Baseline Profile</td>
<td>• 5.1</td>
</tr>
<tr>
<td></td>
<td>• 'SCBP' – Scalable Constrained Baseline Profile</td>
<td>• 5.2</td>
</tr>
<tr>
<td></td>
<td>• 'SHP' – Scalable High Profile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'SHIP' – Scalable High Intra Profile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'SCHP' – Scalable Constrained High Profile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'StereoHP' – Stereo High profile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'MultiviewHP' – Multiview High Profile</td>
<td></td>
</tr>
<tr>
<td>H.264 (alternate)</td>
<td>profile_idc as defined in [ISO14496-10]</td>
<td>level_idc as defined in [ISO14496-10]</td>
</tr>
<tr>
<td>MPEG2</td>
<td>As defined in [ISO13818-2]</td>
<td>As defined in [ISO13818-2]</td>
</tr>
<tr>
<td></td>
<td>• 'SP' – Simple Profile</td>
<td>• 'LL' – Low Level</td>
</tr>
<tr>
<td></td>
<td>• 'MP' – Main Profile</td>
<td>• 'ML' – Main Level</td>
</tr>
<tr>
<td></td>
<td>• 'SNR' Scalable Profile</td>
<td>• 'H-14' – High 1440</td>
</tr>
<tr>
<td></td>
<td>• 'Spatial' – Spatially Scalable Profile</td>
<td>• 'HL' – High Level</td>
</tr>
</tbody>
</table>
In consideration for the future is the addition of a new parameter, possibly called CodeSubtype, that corresponds with the [RFC6381] representation of the CODEC. This would be modeled after @codecs in MPEG DASH [ISO23009-1].

5.2.6 DigitalAssetVideoPicture-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetVideoPicture-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AspectRatio</td>
<td></td>
<td>Aspect ratio of picture after decode (i.e., frame size). Note that this is not necessarily the original aspect ratio. These will be of the form n:m, for example, “16:9”. The following should be used for the respective standard encoding: “16:9” “4:3”, “1.85:1”, “2.35:1”, “1:1”, etc.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>PixelAspect</td>
<td></td>
<td>Class of pixel aspect ratios</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>“square” “NTSC”: “PAL” “other”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WidthPixels</td>
<td></td>
<td>Number of columns of pixels encoded (e.g., 1920)</td>
<td>xs:int</td>
<td>0..1</td>
</tr>
<tr>
<td>HeightPixels</td>
<td></td>
<td>Number of rows of pixels encoded (e.g., 1080)</td>
<td>xs:int</td>
<td>0..1</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
<td>Type</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>ActiveWidthPixels</td>
<td>Number of active pixels. Must be less than or equal to HeightPixels.</td>
<td>xs:int</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>ActiveHeightPixels</td>
<td>Number of active pixels. Must be less than or equal to WidthPixels.</td>
<td>xs:int</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>FrameRate</td>
<td>Frames/second. If interlaced, use the frame rate (e.g., NTSC is 30).</td>
<td>xs:int</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>multiplier</td>
<td>This attribute indicates whether the 1000/1001 multiple should be applied. There is only one legal value for this attribute which is “1000/1001”. If present, then apply 1000/1001 multiplier to FrameRate. For example, a FrameRate of 30 with multiplier='1000/1001' defines an actual frame rate of 29.97. If the frame rate is integral, this attribute shall not be present</td>
<td>xs:string “1000/1001”</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>timecode</td>
<td>Indication of how drop frames are handled in timecode. See below.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>Progressive</td>
<td>Whether image is progressive. "true"=progressive, "false"=interlaced</td>
<td>xs:boolean</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>scanOrder</td>
<td>Indicates the scan order.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>ColorSubsampling</td>
<td>Color subsampling model, if applicable.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>Colorimetry</td>
<td>Picture colorimetry.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>Type3D</td>
<td>Type of 3D picture. Encoding currently undefined.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>MasteredColorVolume</td>
<td>Color Volume used at mastering. This represents the boundaries of the encoded color.</td>
<td>md:DigitalAssetColorVolume-type</td>
<td>0..1</td>
<td></td>
</tr>
</tbody>
</table>
Type 3D is encoded with the following values:

- ‘left-only’ – Left eye only. Right eye is presumed in a different container.
- ‘right-only’ – Right eye only. Left eye is presumed in a different container.
- ‘left-right’ – Side-by-side encoding with left eye on the left.
- ‘right-left’ – Side-by-side encoding with left eye on the right.
- ‘left-over-right’ – Top-bottom with the with left eye on the top.
- ‘right-over-left’ – Top-bottom encoding with left eye on the bottom.
- ‘interlaced-left-first’ – Interlaced encoding with left eye lines over right eye lines.
- ‘interlaced-right-first’ – Interlaced encoding with right eye lines over left eye lines.
- ‘2D-plus-Delta’ – 2D Plus Delta encoding, generally associated with Multiview Video Coding (MVC) extensions to H.264.
- ‘2D-plus-Depth’ – 2D Plus Depth encoding.
- ‘Anaglyph’ – anaglyph encoding. Specific color pairs can be indicated by adding a dash and one of the following values (e.g., Anaglyph-rc’)
 - ‘rg’ – red-green
 - ‘rc’ – red-cyan
 - ‘ab’ – Amber-blue, such as ColorCode 3-D
 - ‘Anachrome’ – Anachrome red/cyan
 - ‘super’ – super-anaglyph spectral multiplexing. Proprietary systems can append system (e.g., Anaglyph-super-Dolby).

5.2.6.1 FrameRate/timecode Encoding

The timecode element of FrameRate is encoded with the following values:

- ‘Drop’ – Drop frame SMPTE timecode is used.
• EBU – AES/EBU embedded timecode
• Other – Other timecode

5.2.6.2 **scanOrder Encoding**

For interlaced (i.e., Progressive=’false’), valid values are

- ‘TFF’ for Top Field First
- ‘BFF’ for Bottom Field First

For Progressive (i.e., Progressive=’true’), it is recommended that the optional attribute not be included. If included, the only valid is

- ‘PPF” Picture Per Field

5.2.6.3 **ColorSubsampling Encoding**

Valid values for ColorSubsampling are:

- ‘4:1:1’
- ‘4:2:0’
- ‘4:2:2’
- ‘4:4:4’

5.2.6.4 **Colorimetry Encoding**

Values for Colorimetry include:

- ‘P3’ – SMPTE RP 431-2:2011 D-Cinema Quality – Reference Projector and Environment. This is also referred to as DCI-P3 or P3.

5.2.6.5 **DigitalAssetColorVolume-type**

The primaries, white point and luminance in this type define a color volume. Primaries are defined in terms of [CIE15] chromaticity values for R, G and B. White Point is defined as a [CIE15] chromaticity value.
Minimum and Maximum luminance is defined in units of candela per square meter (cd/m²). Luminance values shall have two decimal places, as per [SMPTE-2086].

When this element refers to mastered content, the values represent the outer boundaries of the encoded picture content. Note that the encoding method might support more values than are actually encoded.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetColorVolume-type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrimaryRChromaticity</td>
<td></td>
<td>Red chromaticity values.</td>
<td>md:DigitalAssetChromaticity-type</td>
</tr>
<tr>
<td>PrimaryGChromaticity</td>
<td></td>
<td>Green chromaticity values.</td>
<td>md:DigitalAssetChromaticity-type</td>
</tr>
<tr>
<td>PrimaryBChromaticity</td>
<td></td>
<td>Blue chromaticity values.</td>
<td>md:DigitalAssetChromaticity-type</td>
</tr>
<tr>
<td>WhitePointChromaticity</td>
<td></td>
<td>White point chromaticity values.</td>
<td>md:DigitalAssetChromaticity-type</td>
</tr>
<tr>
<td>LuminanceMax</td>
<td></td>
<td>Maximum luminance.</td>
<td>xs:decimal</td>
</tr>
<tr>
<td>LuminanceMin</td>
<td></td>
<td>Minimum luminance.</td>
<td>xs:decimal</td>
</tr>
</tbody>
</table>

5.2.6.6 DigitalAssetColorEncoding-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetColorEncoding-type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primaries</td>
<td></td>
<td>Primaries used in encoding.</td>
<td>xs:string</td>
</tr>
<tr>
<td>TransferFunction</td>
<td></td>
<td>Transfer Function used in encoding.</td>
<td>xs:string</td>
</tr>
<tr>
<td>ColorDifferencing</td>
<td></td>
<td>Color Differencing used in encoding.</td>
<td>xs:string</td>
</tr>
</tbody>
</table>

Motion Picture Laboratories, Inc.
5.2.6.6.1 Primaries Encoding

Primaries is encoded as follows

- ‘BT601’ – Uses primaries defined in ITU-R Recommendation BT.601. [ITUR-BT.601]
- ‘BT709’ – Uses primaries defined in [ITUR-BT.709]
- ‘BT2020’ – Uses primaries defined in [ITUR-BT.2020]
- ‘DCIP3’ – Uses primaries defined in [SMPTE-431-2]. This is commonly referred to as Digital Cinema Initiative (DCI) P3.
- ‘XYZ’ – CIE XYZ primaries, defined in [CIE1931].
- ‘ACES’ – Academy Color Encoding Specification (ACES) primaries as defined in [ACES-2008-1]

5.2.6.6.2 Transfer Function Encoding

TransferFunction is encoded as follows

- ‘BT1886’ – Gamma 2.4 as defined in [BT.1886]. Commonly used for BT.709 and BT.2020 video.
- ‘ST428-1’ – DCI Gamma 2.6 as defined in [SMPTE-428-1], Section 4.3.
- ‘ST2084’ – High dynamic range transfer function as defined in [SMPTE-2084].

5.2.6.6.3 ColorDifferencing Encoding

ColorDifferencing is encoded as follows

- ‘BT601’ – Uses color differencing defined in [ITUR-BT.601]
- ‘BT709’ – Uses color differencing defined in [ITUR-BT.709]
- ‘BT2020’ – Uses color differencing defined in [ITUR-BT.2020]
- ‘ST2085’ – Uses color differencing defined in [SMPTE-2085]
- ‘none’ – No color differencing applied. For example, uncompressed video using non-color differenced encoding (e.g. tiff with RGB or XYZ)

5.2.6.7 DigitalAssetChromaticity-type

Expresses chromaticity in accordance with CIE 15:2004 “Calculation of chromaticity coordinates” [CIE15] (Section 7.3) and [SMPTE-2086].
5.2.6.8 **DigitalAssetPictureLightLevel-type**

This complex type provides definitions for encoded light levels in the video.

These have value in determining playability, especially with respect to power limitations within a display.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetPictureLightLevel-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ContentMax</td>
<td></td>
<td>Maximum Pixel Light Level for the Content.</td>
<td>xs:nonNegativeInteger</td>
<td>0..n</td>
</tr>
<tr>
<td>interpretation</td>
<td></td>
<td>Enumeration that identifies how ContentMax is to be interpreted. If absent, “MaxCLL” is assumed.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>FrameAverageMax</td>
<td></td>
<td>Maximum Average Light Level for a Frame</td>
<td>xs:nonNegativeInteger</td>
<td>0..n</td>
</tr>
<tr>
<td>interpretation</td>
<td></td>
<td>Enumeration that identifies how FrameAverageMax is to be interpreted. If absent, “MaxFALL” is assumed.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
</tbody>
</table>

Default interpretation of ContentMax and FrameAverageMax are “MaxCLL” and “MaxFALL” respectively. If these interpretation are used, the @interpretation attribute need not be used.

Interpretation of ContentMax as “MaxCLL” and FrameAverageMax as “MaxFALL” is in accordance with [CEA861.3]. The definitions for MaxCLL and MaxFALL are as follows:

Content with interpretation="MaxCLL" is calculated using the following algorithm:
CalculateMaxCLL()
{
 set MaxCLL = 0
 for each (frame in the sequence)
 {
 set frameMaxLightLevel = 0
 for each (pixel in the active image area of the frame)
 {
 convert the pixel's non-linear (R',G',B') values to linear values (R,G,B) calibrated to cd/m²
 set maxRGB = max(R,G,B)
 if(maxRGB > frameMaxLightLevel)
 set frameMaxLightLevel = maxRGB
 }
 if(frameMaxLightLevel > MaxCLL)
 set MaxCLL = frameMaxLightLevel
 }
 return MaxCLL
}

FrameAverage with interpretation="MaxFALL" is calculated using the following algorithm:

CalculateMaxFALL()
{
 set MaxFALL = 0
 for each (frame in the sequence)
 {
 set runningSum = 0
 for each (pixel in the active image area of the frame)
 {
 convert the pixel's non-linear (R',G',B') values to linear values (R,G,B) calibrated to cd/m²
 set maxRGB = max(R,G,B)
 set runningSum = runningSum + maxRGB
 }
 set frameAverageLightLevel = runningSum / numberOfPixelsInActiveImageArea
 if(frameAverageLightLevel > MaxFALL)
 set MaxFALL = frameAverageLightLevel
 }
 return MaxFALL
}

When using MaxCLL interpretation, if Content is required, but the value is unknown, 0 (zero) shall be used. When using MaxFALL interpretation, if FrameAverage is required, but the value is unknown, 0 (zero) shall be used.

For MaxCLL interpretation, the unit is equivalent to cd/m² when the brightest pixel in the entire video stream has the chromaticity of the white point of the encoding system used to
represent the video stream. Since the value of MaxCLL is computed with a max() mathematical operator, it is possible that the true CIE Y Luminance value is less than the MaxCLL value. This situation may occur when there are very bright blue saturated pixels in the stream, which may dominate the max(R,G,B) calculation, but since the blue channel is an approximately 10% contributor to the true CIE Y Luminance, the true CIE Y Luminance value of the example blue pixel would be only approximately 10% of the MaxCLL value.

For MaxFALL interpretation, the unit is equivalent to cd/m2 when the maximum frame average of the entire stream corresponds to a full-screen of pixels that has the chromaticity of the white point of the encoding system used to represent the video stream. The frame-average computation used to compute the MaxFALL value is performed only on the active image area of the image data. If the video stream is a "letterbox" format (e.g. where a 2.40:1 aspect ratio is put inside a 16:9 image container with black bars on the top and bottom of the image), the black bar areas are not part of the active image area and therefore are not included in the frame-average computation. This allows the MaxFALL value to remain an upper bound on the maximum frame-average light level even if image zooming or pan/scan is performed as a post-processing operation.

5.2.6.9 HDRPlaybackInfo-type

HDRPlaybackInfo-type contains information the player uses to properly playback HDR content.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetVideoPictureHDRPlaybackInfo-type</td>
<td>SDRDownconversion</td>
<td>Instructions for downconverting HDR video to SDR video.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
</tbody>
</table>

SDRDownconversion indicates that HDR to SDR downconversion is prohibited. Content is authored such that downconversion would produce an unacceptable result. An SDR video track, if available, should be used instead. SDRDownconversion is encoded as follows:

- ‘Prohibited’ – Downconversion is prohibited unless the player has an indication that the display device has the capability to handle all video parameters. For example, the ability to process SMPTE 2084 EOTF [SMPTE2084] is such an indication.
- ‘ProhibitedAlways’ – Downconversion is prohibited unless it is known to the player that the display device the capability to handle all video parameters.
5.2.6.10 **DigitalAssetVideoPictureThreeSixty-type**

This complex type contains information the player uses to properly playback 360 Video content.

Where traditional video is mapped onto a rectangular surface, 360 video is mapped onto a surface that surrounds the viewer (either physically or virtually). Generally, a 360 video is mapped onto sphere so the viewer can look all around. However, other topologies such cylinders and cubes are also valid. Common Metadata identifies the surface in the Rendering element. Note that current practice assumes spherical rendering and does not specify Rendering.

Projection is the mapping of the rendered surface onto the encoded video frame; for example, the mapping of a sphere onto a 3840x2160 video frame. The processes are like those used in cartography and the concepts apply—excepting that the Earth is not a true sphere. Note that current practice most commonly uses equirectangular projections.

See Picture/ThreeD for information on 3D encoding.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetVideoPicture360-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection</td>
<td></td>
<td>Projection of the 360 video onto a rectangular video frame.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>Rendering</td>
<td></td>
<td>Surface on which image is intended to be rendered</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>InitialView</td>
<td></td>
<td>Initial perspective of viewer at playback start.</td>
<td>DigitalAssetVideoPicture360Initial-type</td>
<td></td>
</tr>
</tbody>
</table>

Projection is encoded as follows:

- ‘equirectangular’ – Equirectangular projection.
- ‘cube32’ – Cube mapped 3x2
- ‘cube43’ – Cube mapped 4x3

Rendering is encoded as follows:

- ‘sphere’ – Spherical surface, with the viewer in the middle
- ‘cylinder’ – Vertically oriented cylindrical surface with the user in the middle. Orientation is such that the cylinder’s opening is above and below the viewer.
- ‘cube’ – Cube with viewer at the center, viewing the center of one surface.
5.2.6.11 DigitalAssetVideoPicture360Initial-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetVideoPicture360Initial-type</td>
<td>HeadingDegrees</td>
<td>Initial heading</td>
<td>xs:decimal, 0 to 360</td>
</tr>
<tr>
<td></td>
<td>PitchDegrees</td>
<td>Initial pitch</td>
<td>xs:decimal, -90 to 90</td>
</tr>
<tr>
<td></td>
<td>RollDegrees</td>
<td>Initial roll</td>
<td>xs:decimal, -180 to 180</td>
</tr>
</tbody>
</table>

5.2.7 DigitalAssetSubtitleData-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetSubtitleData-type</td>
<td>Format</td>
<td>Format of subtitle. See Subtitle Format Encoding below.</td>
<td>xs:string</td>
</tr>
<tr>
<td></td>
<td>SDImage</td>
<td>Are subtitle images targeted towards SD included? ‘true’ means yes, ‘false’ or absent means no. This only applies if Format is ‘Image’ or ‘Combined’</td>
<td>xs:boolean</td>
</tr>
<tr>
<td></td>
<td>HDImage</td>
<td>Are subtitle images targeted towards HD included? ‘true’ means yes, ‘false’ or absent means no. This only applies if Format is ‘Image’ or ‘Combined’</td>
<td>xs:boolean</td>
</tr>
<tr>
<td></td>
<td>UHDImage</td>
<td>Are subtitle images targeted towards UHD included? ‘true’ means yes, ‘false’ or absent means no. This only applies if Format is ‘Image’ or ‘Combined’</td>
<td>xs:boolean</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Description of this subtitle track. Description is in the language of the Language element.</td>
<td>xs:string</td>
</tr>
<tr>
<td></td>
<td>language</td>
<td>Language of Description (for localization)</td>
<td>xs:language</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Intended purpose or purposes of subtitle</td>
<td>xs:string</td>
</tr>
<tr>
<td>FormatType</td>
<td></td>
<td>Identification of subtitle format. See below</td>
<td>xs:string</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Language. See Language Encoding in Section 3.1.</td>
<td>xs:language</td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td>Encoding information (to be defined).</td>
<td>xs:anyType</td>
</tr>
<tr>
<td>CardsetList</td>
<td></td>
<td>Cards, such as distribution logos and anti-piracy notices, included in subtitle.</td>
<td>md:DigitalAssetCardsetList-type</td>
</tr>
<tr>
<td>TrackReference</td>
<td></td>
<td>Track cross-reference to be used in conjunction with container-specific metadata.</td>
<td>xs:string</td>
</tr>
<tr>
<td>TrackIdentifier</td>
<td></td>
<td>Identifiers, such as EIDR, for this track. Multiple identifiers may be included.</td>
<td>md:ContentIdentifier-type</td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td>Extensibility mechanism to accommodate data that is private to given usage.</td>
<td>md:PrivateData-type</td>
</tr>
</tbody>
</table>

5.2.7.1 Subtitle Type Encoding

Type describes the intended use or uses of the subtitle. If the track has more than one intended use, then multiple instances of `Type` must be included. For example, a single track might be used for both ‘normal’ and ‘SDH’ uses.

The following values may be used:

- ‘normal’ – subtitle used for languages
- ‘large’ – subtitles for visually impaired
- ‘forced’ – used to indicate subtitles is required regardless of whether the user has enabled subtitles. The correct language subtitle track must be chosen. Often referred to as ‘forced captions.’ A `Type` of ‘forced’ must only be used in conjunction with other `Type` instances, when the track contains a mix of forced and non-forced subtitles. Generally, when ‘forced’ is used it is the only instance of `Type`.
- ‘commentary’ – commentary, such as associated with a commentary audio track.
• ‘easyreader’ – ‘easy reader’ subtitle complying with US Federal requirements [47CFR9.103(c)(9)]. The ‘easy reader’ and ‘SDH’ Types are independent. That is, if a track is both ‘easy reader’ and ‘SDH’ it should be tagged with both Types.

• ‘other’ – subtitles for commentary, or other purposes.

5.2.7.2 Subtitle Format Encoding

It is anticipated that IANA or others will provide a registry for subtitle encoding schemes. At that time, this section will be revised to reflect a more standard means of describing the subtitle. In the meantime, the following values may be used for Subtitle /Format:

• ‘Text’ – text subtitle
• ‘Image’ – image/picture data
• ‘Combined’ – Subtitle encoding that includes both text and image

5.2.7.3 FormatType Encoding

FormatType may be one of the following:

• ‘3GPP’ – 3GPP Timed Text, MPEG 4 Part 17 Timed Text, ISO/IEC 14496-17.
• ‘Blu-Ray’
• ‘DCI’ – DCI Subtitle, SMPTE 428-7-2007 D-Cinema Distribution Master - Subtitle
• ‘DVB’ – DVB Subtitling, ETSI 300 743 ‘Digital Video Broadcasting (DVB); Subtitling systems (2006-11)
• ‘DVD’
• ‘SMPTE 2052-1 Timed Text” – Timed Text Format (SMPTE-TT), SMPTE ST 2052-1:2010
• ‘SCC’ – SCC Subtitles (‘Scenarist Closed Caption’).
• ‘SRT’ – SRT Subtitles
• ‘TTML’ –Timed Text Markup Language (TTML) 1.0, W3C [TTML]
 o ‘ITT” – iTunes Timed Text [ITT]
 o ‘CFF-TT’ Common File Format (CFF) Timed Text [CFFTT]
 o ‘IMSC1’ – TTML Profiles for Internet Media Subtitles and Captions 1.0 [IMSC1]
• ‘WebVTT’ – WebVTT (Web Video Text Tracks)
5.2.8 DigitalAssetImageData-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetImageData-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>Description of this subtitle track. Description is in the language of the</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td></td>
<td>language</td>
<td>Language element.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Type of image</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>Purpose</td>
<td></td>
<td>Intended purpose. Equivalent to LocalizedInfo/ArtReference/@purpose.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td>Number of columns of pixels (e.g., 1920)</td>
<td>xs:int</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td>Number of rows of pixels (e.g., 1080)</td>
<td>xs:int</td>
<td></td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td>MIME type indicating encoding method. See Section 3.14.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>PictureDetails</td>
<td></td>
<td>Information about the image encoding. This matches Video track picture data.</td>
<td>md:DigitalAssetVideoPicture-type</td>
<td>0..1</td>
</tr>
<tr>
<td>DynamicRangeProfile</td>
<td></td>
<td>Category of encoded dynamic range.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>LuminanceMin</td>
<td></td>
<td>Minimum image luminance. Definition is as defined in Section 5.2.6.5</td>
<td>xs:decimal</td>
<td>0..1</td>
</tr>
<tr>
<td>LuminanceMax</td>
<td></td>
<td>Maximum image luminance. Definition is as defined in Section 5.2.6.5</td>
<td>xs:decimal</td>
<td>0..1</td>
</tr>
<tr>
<td>ColorGamutProfile</td>
<td></td>
<td>Category of encoded color gamut as define in terms of colorimetry. More</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>detail can be provided in PictureDetails. Values are defined in Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2.6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Language(s) for this image, if any.</td>
<td>xs:language</td>
<td>0..n</td>
</tr>
</tbody>
</table>
TrackReference

Track cross-reference to be used in conjunction with container-specific metadata.

xs:string

0..1

TrackIdentifier

Identifiers, such as EIDR, for this track. Multiple identifiers may be included.

md:ContentIdentifier-type

0..n

Private

Extensibility mechanism to accommodate data that is private to given usage.

md:PrivateData-type

0..1

DynamicRangeProfile can have the following values:

- ‘SDR’ – Standard Dynamic Range
- ‘HDR’ – High Dynamic Range

Precise dynamic range is defined using LuminanceMin and LuminanceMax.

To indicate a thumbnail for a 360 video, PictureDetails/ThreeSixty/InitalView devices the center of the image. Width and Height represent the pixels extending from that central point with the possible extra pixel to the right and below the image. That is, floor(Width/2) to the left, ceil(Width/2) to the right, floor(Height/2) above and ceil(Height/2) below.

5.2.9 DigitalAssetInteractiveData-type

Interactive data covers both applications as well other forms of interaction such as interactive (non-linear) Virtual Reality (VR). Note that linear 360 video is addressed by its respective video and audio tracks.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetInteractive Data-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Type of interactive track</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>SubType</td>
<td></td>
<td>Subtype(s) of interactive track. Used to provide more specificity to Type.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>FormatType</td>
<td></td>
<td>The form the encoding takes: text, executable or metadata.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Language. See Language Encoding in Section 3.1.</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td>Encoding information.</td>
<td>md:DigitalAssetInteractiveEncoding-type</td>
<td>0..n</td>
</tr>
<tr>
<td>TrackReference</td>
<td>Track cross-reference to be used in conjunction with container-specific metadata.</td>
<td>xs:string</td>
<td>0..1</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>TrackIdentifier</td>
<td>Identifiers, such as EIDR, for this track. Multiple identifiers may be included.</td>
<td>md:ContentIdentifier-type</td>
<td>0..n</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>Extensibility mechanism to accommodate data that is private to given usage.</td>
<td>md:PrivateData-type</td>
<td>0..1</td>
<td></td>
</tr>
</tbody>
</table>

For schema redefine support, the first three elements are defined in md:DigitalAssetInteractiveBaseData-type which is in turn defined as md:DigitalAssetInteractiveBaseData-group. This has no XML impact.

5.2.9.1 **Interactive Type Encoding**

Type allows the following values:

- ‘Menu’ – Menu system for navigating settings, value added material and other options.
- ‘Mixed-Media’ – Mixed Media Experience, such as Cross-Platform Extras (CPE) or iTunes Extras package
- ‘Standalone Game’ – Playable game that runs independently of audio or video material
- ‘Overlay Game’ – Game synchronized to audio or video material
- ‘Skins’ – Information that customizes appearance
- ‘Interactivity’ – Ability to choose settings, value added material and other options outside of menus. For example, pop-ups.
- ‘Image’ – Identifies the special case where the interactive application is an image. This supports the case where no other application Type is playable. This is typically used in conjunction with Encoding/RuntimeEnvironment=‘Default’
- ‘Commerce’ – Commerce Experience
- ‘Location’ – Location or Mapping application
- ‘Live’ – Live Data feed
- ‘Comic’ – Digital Comic
- ‘AR’ – Augmented Reality Experience
- ‘MR’ – Mixed Reality Experience
- ‘360’ – Linear 360-degree video experience. This covers 360-degree experiences not encoded as a single linear video. Typically, it will fall in this category if playback requires a player not currently assumed in Common Metadata.
5.2.9.2 Interactive FormatType Encoding

FormatType allows the following values:

- ‘Text’ – Instructive text.
- ‘Executable’ – Software that is executable through a runtime environment. See Interactive RuntimeEnvironment.
- ‘Metadata’ – Declarative data that describes behavior to a runtime environment

5.2.9.3 Interactive Encoding Type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetInteractive Encoding-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RuntimeEnvironment</td>
<td></td>
<td>The execution runtime environment for the interactive content.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EnvironmentAttribute</td>
<td></td>
<td>Any characteristic of the environment that is a required or recommended feature needed for playback.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>recommended</td>
<td></td>
<td>Indicates that attribute is recommended. Content will play if this attribute not present/satisfied. If absent or ‘false’, the attribute in EnvironmentAttribute is required.</td>
<td>xs:boolean</td>
<td>0..1</td>
</tr>
<tr>
<td>FirstVersion</td>
<td></td>
<td>Earliest version of RuntimeEnvironment in which this encoding will play. If it plays in all versions, or all versions less than or equal to LastVersion, this element may be omitted.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>LastVersion</td>
<td></td>
<td>Last version of RuntimeEnvironment in which this encoding will play. If it plays in all versions, or all versions after FirstVersion, this element may be omitted</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>(any)</td>
<td></td>
<td>Any other addition element(s)</td>
<td>xs:any##other</td>
<td>0..n</td>
</tr>
</tbody>
</table>

RuntimeEnvironment must use the following values when the associated runtime environments are used for ‘Executable’ and ‘Metadata’ FormatType values.

The following are a few runtime environments for Executable and Metadata Format Types. Notably absent from this list are emerging Virtual Reality (VR) platforms and engines. These will be enumerated in the future.
• ‘Flash’ – Adobe Flash
• ‘BD-J’ – Blu-ray Java
• ‘MHEG’ – MHEG-5, or more formally ISO/IEC 13522-5.
• ‘HTML5’ – W3C HTML5
• ‘Android’ – Android operating system native app
• ‘iOS’ – Apple iOS operating system native app
• ‘tvOS’ – Apple tvOS
• ‘MacOS’ – Apple MacOS native app
• ‘Windows’ – Microsoft Windows native app
• ‘BrightScript’ – Roku BrightScript native app
• ‘Linux’ – Linux native app
• ‘Default’ – Represents an application that can be played if nothing else can. This is typically an image.
• ‘Other’ – may be used when there is not a type convention.

EnvironmentAttribute is designed to cover a broad range of features. For example, It could indicate the presence of a hardware feature, accessories (e.g., a specific VR interaction device) or a broader concept (e.g., the ability to move in a VR environment). For playback, the assumption is that all the required indicated features will be available.

5.2.10 DigitalAssetWatermark-type

Identification watermarks contain information that identifies content. This complex type describes which watermark is used and also includes information used for recognition.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDWatermark-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>guaranteedAbsent</td>
<td>The watermark specified is guaranteed not present in the media.</td>
<td></td>
<td>0..1</td>
</tr>
<tr>
<td>Vendor</td>
<td></td>
<td>Organization associated with watermark.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>ProductAndVersionID</td>
<td></td>
<td>Identification of specific watermark version of the technology. It must be sufficiently precise to differentiate between incompatible watermarks from the same Vendor.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td>Data is a string that either contains the information encoded by the watermark or is a reference to that data. Its content is outside the scope of this document. This may be vendor-private data.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
</tbody>
</table>
The combination of Vendor and ProductAndVersionID unambiguously identifies a watermark technology.

Vendor is a representation of a watermark vendor or relevant technology. This is not a strict enumeration to allow new vendors to be added. However, it is important that vendor names are used consistently. As general guidance, use initial caps (except for acronyms) and no spaces or punctuation. Following are a few examples:

- ‘Philips’
- ‘Civolution’
- ‘Verance’
- ‘Nielsen’
- ‘AACS’

ProductAndVersionID identifies the precise version of the technology. In particular, it is used to differentiate between incompatible watermarks from the same Vendor.

5.2.11 Cards

A cardset is a collection of static text or graphics separate from the work itself that appear at the beginning or end of the video. Cardsets are typically specific to a market and include distributor logos and anti-piracy warnings. Cardsets may be embedded in video (i.e., burned in) or overlaid on video via a subtitle. Video-embedded cards are described as part of Video metadata. Subtitle cards are described as part of Subtitle metadata.

DigitalAssetCardsetList-type is used to describe a collection of cardsets used together. DigitalAssetCard-type are related by purpose.

Note that we use the term cardsets to refer to one or more cards. For example, a US anti-piracy cardset might consist of more than one warning card including an FBI card, a Department of Homeland Security card and others. Note also that a single video or subtitle track may contain multiple cardsets.

Note that this area is somewhat experimental and will likely change in the future. Please communicate any use cases that are not accommodated by the following.

5.2.11.1 DigitalAssetCardsetList-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardset-type</td>
<td></td>
<td>The intended general usage of the cardset list.</td>
<td>xs:string</td>
<td>n..n</td>
</tr>
</tbody>
</table>
Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Location for which cardset is intended. For example, US anti-piracy cardset would be for country='us'. CardsetLists may apply to more than one region. If absent, cards are assumed to be worldwide.</th>
<th>md:MadeFor Region-type</th>
<th>0..n</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CardSet</th>
<th>Description of the cardset.</th>
<th>md:DigitalAssetCardset-type</th>
<th>1..n</th>
</tr>
</thead>
</table>

Type is encoded as follows:
- ‘Theatrical’ – Theatrical
- ‘Broadcast’ – Broadcast, not including Internet
- ‘Hospitality’ – Hospitality, such as airline and hotel
- ‘Rental’ – Rental (Internet)
- ‘EST’ – Electronic Sell Through (Internet)

5.2.11.2 DigitalAssetCardset-type

A cardset is a collection of cards for one purpose and displayed together. The reason it is a cardset may contain multiple individual cards. For example, a US anti-piracy cardset may contain an FBI card, a Department of Homeland Security card, and others.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardset-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Type of cardset. See below.</td>
<td>xs:string</td>
<td>1..n</td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>Description of cardset (human readable)</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>language</td>
<td></td>
<td>Language of Description (for localization)</td>
<td>xs:language</td>
<td>0..1</td>
</tr>
<tr>
<td>Sequence</td>
<td></td>
<td>Order of display for this cardset. A higher number represents later display. Cardsets with the same sequence must not overlap Region.</td>
<td>xs:positiveInteger</td>
<td>0..1</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Language associated with card. For example, this would indicate the language of a Type='DubbingCredit' card or the language of a Type='AntiPiracy' card.</td>
<td>xs:language</td>
<td>0..n</td>
</tr>
</tbody>
</table>

Type is encoded as follows:
- ‘AntiPiracy’ – Anti-piracy notices
- ‘DistributionLogo’ – Logos associated with distribution entity or entities.
- ‘Rating’ – Content Rating
- ‘DubbingCredit’ – Credits for dubbing (e.g., French talent dubbing in French)
- ‘Intermission’ – Information displayed during an intermission.
- ‘EditNotice’ – Information displayed regarding the edit (e.g., “This movie has been modified from the original version. It has been formatted to fit your screen.”)
- Other

5.2.12 DigitalAssetAncillary-type

Ancillary tracks are tracks that are not playable by themselves, but support another track. An example of Ancillary tracks is an enhancement layer (e.g., Dolby Vision). Ancillary tracks can be a track of an existing type (e.g., a video track) or a track supporting another track.

Ancillary Tracks are matched with exactly one other track called the Base Track. For example, if the Ancillary track is an Enhancement Layer, the Base Track is the Base Layer.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalAssetAncillary</td>
<td></td>
<td>Data-type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Type of Ancillary Track.</td>
<td>xs:string</td>
<td></td>
</tr>
<tr>
<td>SubType</td>
<td></td>
<td>Detailed type information for Ancillary Track.</td>
<td>xs:string</td>
<td>0..n</td>
</tr>
<tr>
<td>BaseTrackID</td>
<td></td>
<td>Internal identifier reference to the Base Track.</td>
<td>md:id-type</td>
<td>0..1</td>
</tr>
<tr>
<td>BaseTrackReference</td>
<td></td>
<td>Track Reference corresponding with TrackReference in the Base Track.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>BaseTrackIdentifier</td>
<td></td>
<td>Track Identifier corresponding with TrackIdentifier in the Base Track.</td>
<td>md:ContentIdentifer-type</td>
<td>0..1</td>
</tr>
<tr>
<td>TrackMetadata</td>
<td></td>
<td>Metadata for the Ancillary Track</td>
<td>md:DigitalAssetMetadata-type</td>
<td>0..1</td>
</tr>
<tr>
<td>CombinedMetadata</td>
<td></td>
<td>Metadata for the Ancillary Track combined with the Base Track</td>
<td>md:DigitalAssetMetadata-type</td>
<td>0..1</td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td>Allowable extension mechanism.</td>
<td>Sequence of 1..n of any##any</td>
<td>0..1</td>
</tr>
</tbody>
</table>
5.2.12.1 Referencing the Base Track

Ancillary Tracks are defined to reference exactly one Base Track. Depending on context, some combination of BaseTrackID, BaseTrackReference and BaseTrackIdentifier will uniquely identify the Base Track. At least one of BaseTrackID, BaseTrackReference and BaseTrackIdentifier must be included. They must contain information sufficient to unambiguously identify the Base Track.

5.2.12.2 Type and SubType encoding

Type is encoded as follows:

- ‘enhancement’ – Ancillary track enhances another track such that the combined track is in some way improved.
- ‘metadata’ – Ancillary track is metadata. For example, an MPEG timed metadata track.
- ‘variation’ – Track defines a variation on the base track. For example, an MPEG Variant track.
- ‘other’ – An ancillary track not fitting one of the definitions above.

SubType currently has no controlled vocabulary.

5.2.12.3 TrackMetadata and CombinedMetadata

TrackMetadata, if present, describes the Ancillary Track itself. For example, a Dolby Vision Enhancement Layer track is formatted as a video track, so it would have Video metadata encoded in TrackMetadata/Video. Any description necessary for a decoder to interpret the track would be included. For example, with Dolby Vision, TrackMetadata/Video/Encoding/Codec could be ‘H.264-DolbyVision’ or ‘H.265-DolbyVision’ as defined in Section 5.2.5.1. Similarly, Ancillary Tracks of other types could use the other element options in TrackMetadata.

CombinedMetadata, if present, describes the track resulting from combining the Base Track with the Ancillary Track. For example, if the resultant combination is a video track, then the CombinedMetadata/Video element would contain the metadata for the resultant track.
6 CONTAINER METADATA

The Container Metadata describes the container that includes the various media pieces and the glue that holds them together.

6.1 Container Metadata Description

Logically speaking, the container holds a collection of tracks as described using md:DigitalAssetMetadata-type. The container packages these data in accordance with the rules for that container type, defined with the md:ContainerType element.

Often, the container type definition alone is not enough information to access the media in the container. md:ContainerSpecificMetadata may be included to provide any additional necessary information. Container-specific metadata definitions are not included in this version of the specification, so the xs:any type is used.

If ContainerSpecificInformation is provided, the md:TrackRef elements in the Digital Asset Metadata types may be used to cross reference. For example, container-specific metadata may map an MPEG-2 transport stream PID to a given Track.

6.2 Definitions

6.2.1 ContainerMetadata-type

This type describes a container that in turn contains one or more audio, video, subtitle or image tracks.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContainerMetadata-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ContainerType</td>
<td></td>
<td>Identification of container type</td>
<td>md:DigitalAssetContainerType-type</td>
<td>0..1</td>
</tr>
<tr>
<td>Track</td>
<td></td>
<td>Track metadata</td>
<td>md:ContainerTrackMetadata-type</td>
<td>1..n</td>
</tr>
<tr>
<td>Hash</td>
<td></td>
<td>Hash of container. Multiple instances may be included if multiple methods are used.</td>
<td>md:Hash-type</td>
<td>0..n</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td>Size of container in bytes (octets).</td>
<td>xs:positiveInteger</td>
<td>0..1</td>
</tr>
<tr>
<td>ContainerReference</td>
<td></td>
<td>Reference to Container within another object. For example, if the Container is a file within a ZIP file, ContainerReference would be the Container’s filename within the ZIP.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
</tbody>
</table>
ContainerIdentifier | Identifier for the Container. For example, if Container were a UltraViolet Common File Format file, this could contain the APID. | md:ContentIdentifier-type | 0..1
---|---|---|---
ContainerSpecificMetadata | Additional information about the content and structure of the container. In the future, container-specific information will be provided. | md:ContainerSpecific-type | 0..1
(any) | Any additional definitions | xs:any##other | 0..n

6.2.1.1 Container Type encoding, ContainerType-type

Container type is of simple type ContainerType-type that is xs:string. It may contain one of the following values:

- ‘3GP’ – Third Generation Partnership Project (3GPP) file format
- ‘3GP2’ – 3GPP2 file format
- ‘AC3’ – Dolby Digital file
- ‘AIFF’ – Audio Interchange File Format
- ‘ASF’ – Microsoft Advanced Streaming Format
- ‘AVI’ – Microsoft Audio Video Interleave, also includes AVI 2.0
- ‘CFF’ – Common File Format (UltraViolet)
- ‘DIVX’ – DivX movie file
- ‘DTS’ – DTS encoded file
- ‘FLV’ – Flash Video File
- ‘HCT’ – Hectavision File
- ‘ISO’ – ISO Container ISO/IEC 14496-12, when not specified in a more specific fashion (e.g., MP4)
- ‘JPEG’ – JPEG image file
- ‘M4V’ – Apple M4V
- ‘MKV’ – Matroska multimedia container
- ‘MPEG-2 (TS)’ – MPEG-2 Transport stream
- ‘MPEG-2 (PS)’ – MPEG-2 Program Stream
- ‘MXF’ – SMPTE MXF file
- ‘Ogg’ – Xiph.Org file format for Vorbis and Theora
- ‘Quicktime (MOV)’ – Apple QuickTime movie file
• ‘PNG’ – Portable Network Graphics (PNG) file
• ‘RIFF’ – Resource Interchange File Format
• ‘RM’ – RealNetwork’s RealMedia file format
• ‘SWF’ – Adobe Shockwave Flash
• ‘TIFF’ – tagged image file format
• ‘WMV’ – Microsoft WMV file
• ‘VOB’ – DVD Video OBject file
• ‘XMF’ – XMF music file (MIDI)
• ‘ZIP’ – ZIP file
• ‘other’

If the format is not in this list, it is acceptable to include the Windows file extension. When using this form, precede with ‘EXT:’. For example, ‘EXT:DXR’ for Macromedia Director Movie File (.dxr file extension).

Standard encoding is preferred and will be investigated.

6.2.1.2 ContainerSpecific-type

ContainerSpecific-type is a sequence of 0..n any##other. This allows any container metadata to be used here.

6.2.1.3 ContainerTrackMetadata-type

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContainerTrackMetadata-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>Metadata for an audio asset</td>
<td>md:DigitalAssetAudioData-type</td>
<td>(choice)</td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>Metadata for a video asset</td>
<td>md:DigitalAssetVideoData-type</td>
<td>(choice)</td>
<td></td>
</tr>
<tr>
<td>Subtitle</td>
<td>Metadata for subtitles</td>
<td>md:DigitalAssetSubtitleData-type</td>
<td>(choice)</td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td>Metadata for Images</td>
<td>md:DigitalAssetImageData-type</td>
<td>(choice)</td>
<td></td>
</tr>
<tr>
<td>Interactive</td>
<td>Metadata for Interactive</td>
<td>md:DigitalAssetInteractiveData-type</td>
<td>(choice)</td>
<td></td>
</tr>
<tr>
<td>Container</td>
<td>Container encapsulated within the container (recursive).</td>
<td>md:ContainerMetadata-type</td>
<td>(choice)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>ExternalTrackReference</td>
<td>Reference to a track that is external. It may be a standalone track or part of another container. If part of a container, the trackReference attribute should point to the track in the other container.</td>
<td>md:DigitalAssetExternalTrackReference-type</td>
<td>(choice)</td>
<td></td>
</tr>
<tr>
<td>InternalTrackReference</td>
<td>Reference to a track that is internal to the Container. This is used when it is preferred to refer to track by IDs rather than metadata.</td>
<td>xs:string</td>
<td>(choice)</td>
<td></td>
</tr>
</tbody>
</table>

6.2.2 ContainerProfile-type

ContainerProfile-type is defined as xs:string. It may be used to specify a profile for a given container. There are no enumerations currently defined.
7 CONTENT RATINGS

Common Metadata supports content advisory based on formal ratings systems along with extensions for special cases such as adult-only content.

7.1 Description

Ratings are of the form: Region/System/Rating/Reason. There is also type (e.g., Film, TV and Music) but this is generally subsumed by the System and implicit in the content (exceptions are handled).

7.2 Rules

There is no implied cross-mapping between advisory systems.

Additional rules can be found in Common Ratings documentation [TR-META-RS].

7.3 Definition

This section specifies the structure that can include a complete content rating set for a title.

7.3.1 ContentRating-type

This element describes content-specific parental control information as provided by the content owner or rating agency.

NotRated and RatingsMatrix are an XSD ‘choice’. If NotRated is chosen, it must be ‘true’. NotRated is used if there are no other ratings.

The absence of a rating in a particular system does not necessarily imply the content is unrated. However, in most cases it can be assumed to be unrated. Specifications based on Common Metadata should include a requirement that all relevant ratings be included if available.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentRating-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NotRated</td>
<td></td>
<td>Has the content never been rated? ‘true’=not rated. Must be ‘true’ if included.</td>
<td>xs:boolean</td>
<td></td>
</tr>
<tr>
<td></td>
<td>condition</td>
<td>An indication of the nature of the unrated status.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
<tr>
<td>Rating</td>
<td></td>
<td>Rating information</td>
<td>md:ContentRatingDetail-type</td>
<td>(choice)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AdultContent Recommend that this element not be used. Instead, accordance with Common Ratings, create a rating with System of “UNRATED” and Rating of “ADULT”. Should content be blocked for all non-adult viewers? ‘true’= yes, ‘false’ or absent means no. There is no formal definition of ‘adult’ content, and this represents the judgment of the originator. xs:boolean 0..1

NotRated is distinguished from “unrated”. As mentioned above, the term “unrated” is often used as a marketing term. “unrated” may be used as a keyword to indicate this type of version. For NotRated, preference is to use the UNRATED conventions in Common Ratings [TR-META-RS], Section 4. NotRated and AdultContent maybe deprecated in the future.

7.3.1.1 Condition encoding

Condition is an indication of why the work is unrated. If condition is absent, no conclusions can be drawn regarding why work is unrated.

If the BasicMetadata-type element has a parent element and condition is included, the values shall be encoded in accordance with Common Metadata Ratings [TR-META-CS], Section 4.

If the BasicMetadata-type element does not have a parent element and condition should not be included. This can be interpreted as “never rated.”

7.3.2 ContentRatingDetail-type

This element describes content-specific parental control information as provided by the content owner or rating agency.

Values come from Section 8, “Content Rating Encoding”. Values should be exactly as entered in the table in Section 8.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
<th>Definition</th>
<th>Value</th>
<th>Card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentRatingDetail-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>md:Region-type</td>
<td>Country/Region. Uses region encoding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>xs:string</td>
<td>Rating System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>xs:string</td>
<td>Rating Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reason</td>
<td>xs:string</td>
<td>Rating Reason. Only one Reason per element (i.e., either “L” or “V”, but not “LV”.)</td>
<td>0...n</td>
<td></td>
</tr>
</tbody>
</table>
Common Metadata

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>xs:Type</th>
<th>minOccurs/MaxOccurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinkToLogo</td>
<td>If there is an image associated with this rating, the link may be provided</td>
<td>xs:anyURI</td>
<td>0..1</td>
</tr>
<tr>
<td>Description</td>
<td>A string associated with the rating, such as, “Rated PG For mild thematic elements and brief smoking”. Note that this is title-specific description, not a generic description of the rating.</td>
<td>xs:string</td>
<td>0..1</td>
</tr>
</tbody>
</table>
8 CONTENT RATING ENCODING

Encoding for content ratings has been moved to its own document, TR-META-CR found at http://www.movielabs.com/md/ratings. We recommend using the latest version of this document.
9 SELECTED EXAMPLES

Following are selected examples. These and other examples will appear on the web site.

9.1 People Name Examples

The following example was based on this test schema

```xml
<xs:element name="Person-name" type="md:PersonName-type"/>
<xs:element name="People">
  <xs:complexType>
    <xs:sequence>
      <xs:element name="Person" type="md:BasicMetadataPeople-type" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>
</xs:element>
```

The following example covers the following people: Gorillaz, Kid n' Play, Cher, 50 Cent, MC Hammer, Dita von Teese, Marilyn Manson, Teenage Mutant Ninja Turtles, James van der Beek, Max von Sydow, Kat von D, Benjamin “Scatman” Crothers, and Peter Sellers. Note that Teenage Mutant Ninja Turtles is not a real entity and therefore will not be encoded, but it was included to test completeness.

```xml
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <mdtest:Person>
    <md:Job>
      <md:JobFunction>Music Group</md:JobFunction>
      <md:JobDisplay>Band</md:JobDisplay>
    </md:Job>
    <md:Name>
      <md:DisplayName>Gorillaz</md:DisplayName>
      <md:SortName>Gorillaz</md:SortName>
    </md:Name>
    <md:Gender>neutral</md:Gender>
  </mdtest:Person>
  <mdtest:Person>
    <md:Job>
      <md:JobFunction>Other Group</md:JobFunction>
      <md:JobDisplay>Comedy Duo</md:JobDisplay>
    </md:Job>
    <md:Name>
      <md:DisplayName>Kid 'n Play</md:DisplayName>
      <md:SortName>Kid 'n Play</md:SortName>
    </md:Name>
    <md:Gender>male</md:Gender>
  </mdtest:Person>
</mdtest:People>
```
<mdtest:Person>
 <md:Job>
 <md:JobFunction>Singer</md:JobFunction>
 <md:JobDisplay>Singer</md:JobDisplay>
 </md:Job>
 <md:Name>
 <md:DisplayName>Cher</md:DisplayName>
 <md:SortName>Cher</md:SortName>
 </md:Name>
 <md:Gender>female</md:Gender>
</mdtest:Person>

<mdtest:Person>
 <md:Job>
 <md:JobFunction>Singer</md:JobFunction>
 <md:JobDisplay>Rapper</md:JobDisplay>
 </md:Job>
 <md:Name>
 <md:DisplayName>50 Cent</md:DisplayName>
 <md:SortName>50 Cent</md:SortName>
 <md:FirstGivenName>Curtis</md:FirstGivenName>
 <md:SecondGivenName>James</md:SecondGivenName>
 <md:FamilyName>Jackson</md:FamilyName>
 <md:Suffix>III</md:Suffix>
 </md:Name>
 <md:Gender>male</md:Gender>
</mdtest:Person>

<mdtest:Person>
 <md:Job>
 <md:JobFunction>Singer</md:JobFunction>
 <md:JobDisplay>Rapper</md:JobDisplay>
 </md:Job>
 <md:Name>
 <md:DisplayName>MC Hammer</md:DisplayName>
 <md:SortName>MC Hammer</md:SortName>
 </md:Name>
 <md:Gender>male</md:Gender>
</mdtest:Person>

<mdtest:Person>
 <md:Job>
 <md:JobFunction>Dancer</md:JobFunction>
 <md:JobDisplay>Burlesque Dancer</md:JobDisplay>
 </md:Job>
 <md:Name>
 <md:DisplayName>Dita von Teese</md:DisplayName>
 <md:SortName>Von Teese, Dita</md:SortName>
 <md:FirstGivenName>Dita</md:FirstGivenName>
 <md:FamilyName>Von Teese</md:FamilyName>
 </md:Name>
 <md:Gender>female</md:Gender>
</mdtest:Person>
<mdtest:Person>
 <md:Job>
 <md:JobFunction>Singer</md:JobFunction>
 <md:JobDisplay>Singer</md:JobDisplay>
 </md:Job>
 <md:Name>
 <md:DisplayName>Marilyn Manson</md:DisplayName>
 <md:SortName>Manson, Marilyn</md:SortName>
 <md:FirstGivenName>Marilyn</md:FirstGivenName>
 <md:FamilyName>Manson</md:FamilyName>
 </md:Name>
 <md:Gender>male</md:Gender>
</mdtest:Person>

<mdtest:Person>
 <md:Job>
 <md:JobFunction>Other Group</md:JobFunction>
 <md:JobDisplay>Superhero Turtles</md:JobDisplay>
 </md:Job>
 <md:Name>
 <md:DisplayName>Teenage Mutant Ninja Turtles</md:DisplayName>
 <md:SortName>Teenage Mutant Ninja Turtles</md:SortName>
 </md:Name>
 <md:Gender>neutral</md:Gender>
</mdtest:Person>

<mdtest:Person>
 <md:Job>
 <md:JobFunction>Actor</md:JobFunction>
 <md:JobDisplay>Actor</md:JobDisplay>
 <md:BillingBlockOrder>1</md:BillingBlockOrder>
 <md:Character>Dawson Leery</md:Character>
 </md:Job>
 <md:Name>
 <md:DisplayName>James Van Der Beek</md:DisplayName>
 <md:SortName>Van Der Beek</md:SortName>
 <md:FirstGivenName>James</md:FirstGivenName>
 <md:SecondGivenName>William</md:SecondGivenName>
 <md:FamilyName>Van Der Beek</md:FamilyName>
 <md:Suffix>Jr.</md:Suffix>
 </md:Name>
 <md:Gender>male</md:Gender>
</mdtest:Person>

<mdtest:Person>
 <md:Job>
 <md:JobFunction>Actor</md:JobFunction>
 <md:JobDisplay>Actor</md:JobDisplay>
 <md:Character>Otto Frank</md:Character>
 </md:Job>
 <md:Name>
 <md:DisplayName>Max von Sydow</md:DisplayName>
 <md:SortName>von Sydow</md:SortName>
 </md:Name>
</mdtest:Person>
<md:FirstGivenName>Max</md:FirstGivenName>
<md:FamilyName>von Sydow</md:FamilyName>
</md:Name>
<md:Gender>male</md:Gender>
</mdtest:Person>
<mdtest:Person>
<md:Job>
<md:JobFunction>Artist/Performer</md:JobFunction>
<md:JobDisplay>Tattoo Artist</md:JobDisplay>
</md:Job>
<md:Name>
<md:DisplayName>Kat von D</md:DisplayName>
<md:SortName>String</md:SortName>
<md:FirstGivenName>Kat</md:FirstGivenName>
<md:FamilyName>von D</md:FamilyName>
</md:Name>
<md:Gender>female</md:Gender>
</mdtest:Person>
<mdtest:Person>
<md:Job>
<md:JobFunction>Singer</md:JobFunction>
<md:JobDisplay>Scat Singer</md:JobDisplay>
</md:Job>
<md:Name>
<md:DisplayName>Scatman Crothers</md:DisplayName>
<md:SortName>Scatman Crothers</md:SortName>
<md:FirstGivenName>Benjamin</md:FirstGivenName>
<md:SecondGivenName>Sherman</md:SecondGivenName>
<md:FamilyName>Crothers</md:FamilyName>
<md:Moniker>Scatman</md:Moniker>
</md:Name>
<md:Gender>male</md:Gender>
</mdtest:Person>
<mdtest:Person>
<md:Job>
<md:JobFunction>Actor</md:JobFunction>
<md:JobDisplay>Actor</md:JobDisplay>
<md:BillingBlockOrder>1</md:BillingBlockOrder>
<md:Character>Group Captain Lionel Mandrake</md:Character>
<md:Character>President Merkin Muffley</md:Character>
<md:Character>Dr. Strangelove</md:Character>
</md:Job>
<md:Name>
<md:DisplayName>Peter Sellers</md:DisplayName>
<md:SortName>Selers</md:SortName>
<md:FirstGivenName>Peter</md:FirstGivenName>
<md:FamilyName>Selers</md:FamilyName>
</md:Name>
<md:Gender>male</md:Gender>
</mdtest:Person>
9.2 Release History Example

The following example is based on this test schema:

```xml
<xs:element name="ReleaseHistorySet">
    <xs:complexType>
        <xs:sequence>
            <xs:element name="ReleaseHistory" type="md:ReleaseHistory-type" maxOccurs="unbounded"/>
        </xs:sequence>
    </xs:complexType>
</xs:element>
```

The following history is included:

- **US Theatrical:** 2008-02-08
- **US Fullscreen DVD:** 2008-06-17
- **US Widescreen DVD:** 2008-06-17
- **UK Theatrical:** 2008-05-30
- **UK DVD:** 2008-09-22

```xml
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <mdtest:ReleaseHistory>
        <md:ReleaseType>original</md:ReleaseType>
        <md:DistrTerritory>
            <md:country>US</md:country>
        </md:DistrTerritory>
        <md:Date>2008-02-08</md:Date>
        <md:Description>US Theatrical Release</md:Description>
    </mdtest:ReleaseHistory>
    <mdtest:ReleaseHistory>
        <md:ReleaseType>DVD</md:ReleaseType>
        <md:DistrTerritory>
            <md:country>US</md:country>
        </md:DistrTerritory>
        <md:Date>2008-06-17</md:Date>
        <md:Description>US Fullscreen Edition</md:Description>
    </mdtest:ReleaseHistory>
    <mdtest:ReleaseHistory>
        <md:ReleaseType>DVD</md:ReleaseType>
        <md:DistrTerritory>
            <md:country>US</md:country>
        </md:DistrTerritory>
        <md:Date>2008-09-22</md:Date>
        <md:Description>UK DVD</md:Description>
    </mdtest:ReleaseHistory>
</mdtest:ReleaseHistorySet>
```
9.3 Content Rating Examples

The following example was based on this test schema:

```xml
<xs:element name="RatingSet" type="md:ContentRating-type"/>
```

The following ratings are given:

- US, MPAA, PG-13
- UK, BBFC, 12
- US, TV Parental Guidelines, TV14, course or crude language, sexual situations and violence
- Canada/Ontario, OFRB, 14A
<md:Rating>
 <md:Region>
 <md:country>GB</md:country>
 </md:Region>
 <md:System>BBFC</md:System>
 <md:Value>12</md:Value>
 <md:LinkToLogo>http://www.bbfc.co.uk/images/classification/c-12.gif</md:LinkToLogo>
</md:Rating>

<md:Rating>
 <md:Region>
 <md:country>US</md:country>
 </md:Region>
 <md:System>TVPG</md:System>
 <md:Value>TV14</md:Value>
 <md:Reason>L</md:Reason>
 <md:Reason>S</md:Reason>
 <md:Reason>V</md:Reason>
 <md:LinkToLogo>http://www.tvguidelines.org/images/tv14.jpg</md:LinkToLogo>
</md:Rating>

<md:Rating>
 <md:Region>
 <md:countryRegion>CA-ON</md:countryRegion>
 </md:Region>
 <md:System>OFRB</md:System>
 <md:Value>14A</md:Value>
 <md:LinkToLogo>http://www.ofrb.gov.on.ca/english/images/14a_high.gif</md:LinkToLogo>
</md:Rating>
</mdtest:RatingSet>
10 REDEFINE SUPPORT

It is anticipated that schemas that use Common Metadata will wish to control vocabularies or otherwise constrain the schema. This is fully allowed.

Note that unless you intend to do redefines, this section is internal to the schema and has no effect on schema users.

To support controlled vocabularies, Common Metadata provides a set of simple types corresponding with particular elements and attributes. These are of the form

<XML type>-<reference>

Where

- <XML type> refers to the original XML type of the attribute or element. For example, xs:string elements start with ‘string’.
- <reference> is a descriptive term relating to the attribute or element in question. For example, BasicMetadata/Genre’s reference is ‘Genre’.

10.1 General XML Type Redefines

These redefines are used across all uses of the XML type.

<table>
<thead>
<tr>
<th>XML type</th>
<th>Redefine type</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:language</td>
<td>md:language-redefine</td>
</tr>
</tbody>
</table>

10.2 Type-specific Redefines

The following tables list the element or attribute that is subject to redefine and the simple type that redefines that value. For example, for the element //PersonName/Suffix, there is a simple type md:string-Name-Suffix that can be redefined to control the Suffix element’s pattern or enumeration.

The Contains enumerations column indicates whether the ‘Redefine type’ already includes enumerations. In that case, the only constraining option available, according to XML redefine rules, is to restrict out one or more of those enumerations.

Note that Common Metadata suggests many vocabularies that are not enforced by XML enumerations.

10.2.1 Identifiers

The following applies to identifiers. This is applicable when only specific identifiers are allowed. If only one Namespace is allowed, one might wish to define Identifier as a pattern.
Common Metadata

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentIdentifier-type/Namespace</td>
<td>md:string-ContentID-Namespace</td>
<td></td>
</tr>
<tr>
<td>ContentIdentifier-type/Identifier</td>
<td>md:string-ContentID-Identifier</td>
<td></td>
</tr>
</tbody>
</table>

10.2.2 Basic Metadata

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>//BasicMetadataInfo-type /ArtReference/@resolution</td>
<td>md:string-ArtReference-resolution</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadataInfo-type /ArtReference/@purpose</td>
<td>md:string-ArtReference-purpose</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadataInfo-type /DisplayIndicators</td>
<td>md:string-DisplayIndicators</td>
<td>yes</td>
</tr>
<tr>
<td>//BasicMetadataInfo-type /Genre</td>
<td>md:string-Genre</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadataInfo-type /Genre/@id</td>
<td>md:string-Genre_id</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadataInfo-type /Keyword</td>
<td>md:string-Keyword</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadataInfo-type /TitleAlternate</td>
<td>md:string-TitleAlternate_type</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadataJob-type/JobFunction</td>
<td>md:string-JobFunction</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadataJob-type/JobFunction/@scheme</td>
<td>md:string-JobFunction-scheme</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadataJob-type/JobDisplay</td>
<td>md:string-JobDisplay</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadata/WorkType</td>
<td>md:string-WorkType</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadata/WorkTypeDetail</td>
<td>md:string-WorkTypeDetail</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadata/PictureFormat</td>
<td>md:string-PictureFormat</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadata/AspectRatio</td>
<td>md:string-AspectRatio</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadata/AssociatedOrg/@role</td>
<td>md:string-AssociatedOrg-role</td>
<td></td>
</tr>
<tr>
<td>//BasicMetadata/SequenceInfo/DistributionNumber-type</td>
<td>md:complex-SequenceInfo-DistributionNumber</td>
<td></td>
</tr>
</tbody>
</table>
10.2.3 Digital Asset Metadata

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>//DigitalAssetAudio-type/Type</td>
<td>md:string-Audio-Type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetAudio-type/SubType</td>
<td>md:string-Audio-SubType</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetAudio-type/Language</td>
<td>md:DigitalAssetAudioLanguage-type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetAudio-type/Channels</td>
<td>md:string-Audio-Channels</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetAudio-type/TrackReference</td>
<td>md:string-TrackReference¹</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetEncoding-type/Codec</td>
<td>md:string-Audio-Enc-Codec</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetEncoding-type/CodecType</td>
<td>md:string-Audio-Enc-CodecType</td>
<td></td>
</tr>
<tr>
<td>Element or Attribute</td>
<td>Redefine type</td>
<td>Contains enumerations</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>//DigitalAssetAudioEncoding-type/ChannelMapping</td>
<td>md:string-Audio-Enc-ChannelMapping</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetAudioEncoding-type/Ambisonics/Type</td>
<td>md:string-Audio-Enc-Amb-Type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetAudioEncoding-type/Ambisonics/Normalization</td>
<td>md:string-Audio-Enc-Amb-Norm</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideo-type/Type</td>
<td>md:string-Video-Type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideo-type/PictureFormat</td>
<td>md:string-Video-PictureFormat</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideo-type/CaptureMethod</td>
<td>md:string-Video-CaptureMethod</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideo-type/SubtitleLanguage</td>
<td>md:string-DigitalAssetVideoSubtitleLanguage</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideo-type/TrackReference</td>
<td>md:string-TrackReference1</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoEncoding-type/Codec</td>
<td>md:string-Video-Enc-Codec</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoEncoding-type/CodecType</td>
<td>md:string-Video-Enc-CodecType</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoEncoding-type/MPEGProfile</td>
<td>md:string-Video-Enc-MProfile</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoEncoding-type/MPEGLevel</td>
<td>md:string-Video-Enc-MLevel</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoEncoding-type/VBR</td>
<td>md:string-Video-Enc-VBR</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/AspectRatio</td>
<td>md:string-Video-Pic-AspectRatio</td>
<td>Yes</td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/AspectRatio</td>
<td>md:string-Video-Pic-AspectRatio</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/ColorSampling</td>
<td>md:string-Video-Pic-ColorSampling</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/Colorimetry</td>
<td>md:string-Video-Pic-Colorimetry</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/FrameRate</td>
<td>md:string-DigitalAssetVideoFrameRate-type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPictureFrameRate-type/@multiplier</td>
<td>md:string-Video-Pic-FrameRate-multiplier</td>
<td>Yes</td>
</tr>
<tr>
<td>//DigitalAssetVideoPictureFrameRate-type/@timecode</td>
<td>md:string-Video-Pic-FrameRate-timecode</td>
<td></td>
</tr>
<tr>
<td>Element or Attribute</td>
<td>Redefine type</td>
<td>Contains enumerations</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/Progressive</td>
<td>md:DigitalAssetVideoPictureProgressive-type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPictureProgressive/@scanOrder</td>
<td>md:string-Video-Pic-Progressive-scanOrder</td>
<td>Yes</td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/Type3D</td>
<td>md:string-Video-Pic-Type3D</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/ColorEncoding/Primaries</td>
<td>md:string-Video-Pic-Primaries</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/ColorEncoding/OETF</td>
<td>md:string-Video-Pic-OETF</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/ColorEncoding/ColorDifferencing</td>
<td>md:string-Video-Pic-ColorDifferencing</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/LightLevel/ContentMax</td>
<td>md:string-Video-Pic-CMaxInterpretation</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/LightLevel/FrameAverageMax</td>
<td>md:string-Video-Pic-FMaxInterpretation</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/HDRPlaybackInfo/SDRDownconversion</td>
<td>md:string-Video-Pic-SDRDownconversion</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/ThreeSixty/Projection</td>
<td>md:string-Video-Pic-Projection</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetVideoPicture-type/ThreeSixty/Rendering</td>
<td>md:string-Video-Pic-Renderingthreed</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetSubtitle-type/Format</td>
<td>md:DigitalAssetSubtitleFormat-type md:string-Subtitle-Format</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetSubtitle-type/Type</td>
<td>md:string-Subtitle-Type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetSubtitle-type/FormatType</td>
<td>md:string-Subtitle-FormatType</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetImage-type/Type</td>
<td>md:string-Image-Type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetImage-type/Encoding</td>
<td>md:string-Image-Encoding</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetImage-type/TrackReference</td>
<td>md:string-TrackReference¹</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetInteractiveData-type/Type</td>
<td>md:string-Interactive-Type</td>
<td></td>
</tr>
<tr>
<td>//DigitalAssetInteractiveData-type/SubType</td>
<td>md:string-Interactive-SubType</td>
<td></td>
</tr>
</tbody>
</table>
10.2.4 Content Ratings

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>//ContentRating-type/NotRated/@condition</td>
<td>md:string-NotRated-condition</td>
<td></td>
</tr>
<tr>
<td>//ContentRatingDetail-type/System</td>
<td>md:string-Rating-System</td>
<td></td>
</tr>
</tbody>
</table>
10.2.5 Container Metadata

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContainerMetadata-type/Type</td>
<td>md:string-Container-Type</td>
<td></td>
</tr>
<tr>
<td>ContainerMetadata-type/ContainerReference</td>
<td>md:string-Container-ContainerReference</td>
<td></td>
</tr>
</tbody>
</table>

10.2.6 Compilation Object

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompObj-type/EntryNumber</td>
<td>md:string-Compilation-EntryNumber</td>
<td></td>
</tr>
<tr>
<td>CompObj-type/EntryClass</td>
<td>md:string-Compilation-EntryClass</td>
<td></td>
</tr>
<tr>
<td>CompObj-type/CompilationClass</td>
<td>md:CompObjClass-type</td>
<td>md:string-CompilationClass</td>
</tr>
<tr>
<td>CompObj-type/CombObjEntry-type/DisplayName</td>
<td>md:StringAndLanguage-type</td>
<td></td>
</tr>
</tbody>
</table>

10.2.7 Additional Types

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>//PersonName-type/Display Name</td>
<td>md:StringAndLanguage-type</td>
<td></td>
</tr>
<tr>
<td>//PersonName-type/SortName</td>
<td>md:StringAndLanguage-type</td>
<td></td>
</tr>
<tr>
<td>//PersonName-type/Suffix</td>
<td>md:string-Name-Suffix</td>
<td></td>
</tr>
<tr>
<td>//PersonIdentifier-type/Namespace</td>
<td>md:string-Identifier-Namespace</td>
<td></td>
</tr>
<tr>
<td>//ReleaseHistory-type/ReleaseType</td>
<td>md:string-ReleaseType</td>
<td></td>
</tr>
<tr>
<td>//ReleaseHistory-type/ReleaseOrg/@idType</td>
<td>md:string-ReleaseOrg-idType</td>
<td></td>
</tr>
<tr>
<td>//Money-type/@currency</td>
<td>md:string-Money-currency</td>
<td></td>
</tr>
</tbody>
</table>
Common Metadata

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>//Region-type/country</td>
<td>md:string-Region-country</td>
<td>[A-Z][A-Z]</td>
</tr>
<tr>
<td>//Region-type/countryRegion</td>
<td>md:string-Region-countryRegion</td>
<td>[A-Z][A-Z]-[A-Z0-9]+</td>
</tr>
<tr>
<td>//Hash</td>
<td>md:string-Hash</td>
<td></td>
</tr>
<tr>
<td>//Hash/@method</td>
<td>md:string-Hash-method</td>
<td></td>
</tr>
</tbody>
</table>

10.2.8 Release History

<table>
<thead>
<tr>
<th>Element or Attribute</th>
<th>Redefine type</th>
<th>Contains enumerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>//ReleaseHistory-type/ReleaseType</td>
<td>md:string-Release-ReleaseType</td>
<td></td>
</tr>
</tbody>
</table>